24 research outputs found

    Prey range and genome evolution of Halobacteriovorax marinus predatory bacteria from an estuary

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mSphere 3 (2018): e00508-17, doi:10.1128/mSphere.00508-17.Halobacteriovorax strains are saltwater-adapted predatory bacteria that attack Gram-negative bacteria and may play an important role in shaping microbial communities. To understand how Halobacteriovorax strains impact ecosystems and develop them as biocontrol agents, it is important to characterize variation in predation phenotypes and investigate Halobacteriovorax genome evolution. We isolated Halobacteriovorax marinus BE01 from an estuary in Rhode Island using Vibrio from the same site as prey. Small, fast-moving, attack-phase BE01 cells attach to and invade prey cells, consistent with the intraperiplasmic predation strategy of the H. marinus type strain, SJ. BE01 is a prey generalist, forming plaques on Vibrio strains from the estuary, Pseudomonas from soil, and Escherichia coli. Genome analysis revealed extremely high conservation of gene order and amino acid sequences between BE01 and SJ, suggesting strong selective pressure to maintain the genome in this H. marinus lineage. Despite this, we identified two regions of gene content difference that likely resulted from horizontal gene transfer. Analysis of modal codon usage frequencies supports the hypothesis that these regions were acquired from bacteria with different codon usage biases than H. marinus. In one of these regions, BE01 and SJ carry different genes associated with mobile genetic elements. Acquired functions in BE01 include the dnd operon, which encodes a pathway for DNA modification, and a suite of genes involved in membrane synthesis and regulation of gene expression that was likely acquired from another Halobacteriovorax lineage. This analysis provides further evidence that horizontal gene transfer plays an important role in genome evolution in predatory bacteria.This research was supported by an Institutional Development award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant no. P20GM103430 and funding from Providence College

    The amyloid precursor protein of Alzheimer’s disease clusters at the organelle/microtubule interface on organelles that bind microtubules in an ATP dependent manner

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 11 (2016): e0147808, doi:10.1371/journal.pone.0147808.The amyloid precursor protein (APP) is a causal agent in the pathogenesis of Alzheimer’s disease and is a transmembrane protein that associates with membrane-limited organelles. APP has been shown to co-purify through immunoprecipitation with a kinesin light chain suggesting that APP may act as a trailer hitch linking kinesin to its intercellular cargo, however this hypothesis has been challenged. Previously, we identified an mRNA transcript that encodes a squid homolog of human APP770. The human and squid isoforms share 60% sequence identity and 76% sequence similarity within the cytoplasmic domain and share 15 of the final 19 amino acids at the C-terminus establishing this highly conserved domain as a functionally import segment of the APP molecule. Here, we study the distribution of squid APP in extruded axoplasm as well as in a well-characterized reconstituted organelle/microtubule preparation from the squid giant axon in which organelles bind microtubules and move towards the microtubule plus-ends. We find that APP associates with microtubules by confocal microscopy and co-purifies with KI-washed axoplasmic organelles by sucrose density gradient fractionation. By electron microscopy, APP clusters at a single focal point on the surfaces of organelles and localizes to the organelle/microtubule interface. In addition, the association of APP-organelles with microtubules is an ATP dependent process suggesting that the APP-organelles contain a microtubule-based motor protein. Although a direct kinesin/APP association remains controversial, the distribution of APP at the organelle/microtubule interface strongly suggests that APP-organelles have an orientation and that APP like the Alzheimer’s protein tau has a microtubule-based function.Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM103430

    Variation in genome content and predatory phenotypes between \u3cem\u3eBdellovibrio\u3c/em\u3e sp. NC01 isolated from soil and \u3cem\u3eB. bacteriovorus\u3c/em\u3e type strain HD100

    Get PDF
    Defining phenotypic and associated genotypic variation among Bdellovibrio may further our understanding of how this genus attacks and kills different Gram-negative bacteria. We isolated Bdellovibrio sp. NC01 from soil. Analysis of 16S rRNA gene sequences and average amino acid identity showed that NC01 belongs to a different species than the type species bacteriovorus. By clustering amino acid sequences from completely sequenced Bdellovibrio and comparing the resulting orthologue groups to a previously published analysis, we defined a ‘core genome’ of 778 protein-coding genes and identified four protein-coding genes that appeared to be missing only in NC01. To determine how horizontal gene transfer (HGT) may have impacted NC01 genome evolution, we performed genome-wide comparisons of Bdellovibrio nucleotide sequences, which indicated that eight NC01 genomic regions were likely acquired by HGT. To investigate how genome variation may impact predation, we compared protein-coding gene content between NC01 and the B. bacteriovorus type strain HD100, focusing on genes implicated as important in successful killing of prey. Of these, NC01 is missing ten genes that may play roles in lytic activity during predation. Compared to HD100, NC01 kills fewer tested prey strains and kills Escherichia coli ML35 less efficiently. NC01 causes a smaller log reduction in ML35, after which the prey population recovers and the NC01 population decreases. In addition, NC01 forms turbid plaques on lawns of E. coli ML35, in contrast to clear plaques formed by HD100. Linking phenotypic variation in interactions between Bdellovibrio and Gram-negative bacteria with underlying Bdellovibrio genome variation is valuable for understanding the ecological significance of predatory bacteria and evaluating their effectiveness in clinical applications

    Variation in genome content and predatory phenotypes between Bdellovibrio sp. NC01 isolated from soil and B. bacteriovorus type strain HD100

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Williams, L. E., Cullen, N., DeGiorgis, J. A., Martinez, K. J., Mellone, J., Oser, M., Wang, J., & Zhang, Y. Variation in genome content and predatory phenotypes between Bdellovibrio sp. NC01 isolated from soil and B. bacteriovorus type strain HD100. Microbiology, 165(12), (2019): 1315-1330, doi: 10.1099/mic.0.000861.Defining phenotypic and associated genotypic variation among Bdellovibrio may further our understanding of how this genus attacks and kills different Gram-negative bacteria. We isolated Bdellovibrio sp. NC01 from soil. Analysis of 16S rRNA gene sequences and average amino acid identity showed that NC01 belongs to a different species than the type species bacteriovorus. By clustering amino acid sequences from completely sequenced Bdellovibrio and comparing the resulting orthologue groups to a previously published analysis, we defined a ‘core genome’ of 778 protein-coding genes and identified four protein-coding genes that appeared to be missing only in NC01. To determine how horizontal gene transfer (HGT) may have impacted NC01 genome evolution, we performed genome-wide comparisons of Bdellovibrio nucleotide sequences, which indicated that eight NC01 genomic regions were likely acquired by HGT. To investigate how genome variation may impact predation, we compared protein-coding gene content between NC01 and the B. bacteriovorus type strain HD100, focusing on genes implicated as important in successful killing of prey. Of these, NC01 is missing ten genes that may play roles in lytic activity during predation. Compared to HD100, NC01 kills fewer tested prey strains and kills Escherichia coli ML35 less efficiently. NC01 causes a smaller log reduction in ML35, after which the prey population recovers and the NC01 population decreases. In addition, NC01 forms turbid plaques on lawns of E. coli ML35, in contrast to clear plaques formed by HD100. Linking phenotypic variation in interactions between Bdellovibrio and Gram-negative bacteria with underlying Bdellovibrio genome variation is valuable for understanding the ecological significance of predatory bacteria and evaluating their effectiveness in clinical applications.This research was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant no. P20GM103430 and by funding to LEW from Providence College. This material is based upon work conducted at a Rhode Island NSF EPSCoR research facility, the Genomics and Sequencing Center, supported in part by the National Science Foundation EPSCoR Cooperative Agreement #EPS-1004057. This material is based upon work supported in part by the National Science Foundation under EPSCoR Cooperative Agreement #OIA-1655221. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication

    A novel SDS-stable dimer of a heterogeneous nuclear ribonucleoprotein at presynaptic terminals of squid neurons

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Neuroscience 300 (2015): 381-392, doi:10.1016/j.neuroscience.2015.05.040.The presence of mRNAs in synaptic terminals and their regulated translation are important factors in neuronal communication and plasticity. Heterogeneous nuclear ribonucleoprotein (hnRNP) complexes are involved in the translocation, stability, and subcellular localization of mRNA and the regulation of its translation. Defects in these processes and mutations in components of the hnRNP complexes have been related to the formation of cytoplasmic inclusion bodies and neurodegenerative diseases. Despite much data on mRNA localization and evidence for protein synthesis, as well as the presence of translation machinery, in axons and presynaptic terminals, the identity of RNA-binding proteins involved in RNA transport and function in presynaptic regions is lacking. We previously characterized a strongly basic RNA-binding protein (p65), member of the hnRNP A/B subfamily, in squid presynaptic terminals. Intriguingly, in SDS-PAGE, p65 migrated as a 65 kDa protein, whereas members of the hnRNP A/B family typically have molecular masses ranging from 35 to 42 kDa. In this report we present further biochemical and molecular characterization that shows endogenous p65 to be an SDS-stable dimer composed of ~37 kDa hnRNPA/B-like subunits. We cloned and expressed a recombinant protein corresponding to squid hnRNPA/B-like protein and showed its propensity to aggregate and form SDS-stable dimers in vitro. Our data suggest that this unique hnRNPA/B-like protein co-localizes with synaptic vesicle protein 2 and RNA-binding protein ELAV and thus may serve as a link between local mRNA processing and presynaptic function and regulation.Research was supported by grants to REL from the Fundação de Amparo à Pesquisa do Estado de Sao Paulo (FAPESP), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da FMRP-USP (FAEPA). JAD received financial support from the RI-INBRE Program Grant #8 P20 GM103430-12 from the National Institute of General Medical Sciences, NIH, Bethesda, MD. DTPL and GSL received research fellowships from FAPESP and CNPq. REL and JCR received the Productivity-in-Research fellowship from CNPq

    Isolation and ultrastructural characterization of squid synaptic vesicles

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2011. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 220 (2011): 89-96.Synaptic vesicles contain a variety of proteins and lipids that mediate fusion with the pre-synaptic membrane. Although the structures of many synaptic vesicle proteins are known, an overall picture of how they are organized at the vesicle surface is lacking. In this paper, we describe a better method for the isolation of squid synaptic vesicles and characterize the results. For highly pure and intact synaptic vesicles from squid optic lobe, glycerol density gradient centrifugation was the key step. Different electron microscopic methods show that vesicle membrane surfaces are largely covered with structures corresponding to surface proteins. Each vesicle contains several stalked globular structures that extend from the vesicle surface and are consistent with the V-ATPase. BLAST search of a library of squid expressed sequence tags identifies 10 V-ATPase subunits, which are expressed in the squid stellate ganglia. Negative-stain tomography demonstrates directly that vesicles flatten during the drying step of negative staining, and furthermore shows details of individual vesicles and other proteins at the vesicle surface.JAD is supported by the RI-INBRE program award # P20RR016457-10 from the National Center for Research Resources (NCRR), NIH

    Farm-waste-derived recyclable photothermal evaporator

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tian, Y., Liu, X., Li, J., Deng, Y., DeGiorgis, J. A., Zhou, S., Caratenuto, A., Minus, M. L., Wan, Y., Xiao, G., & Zheng, Y. Farm-waste-derived recyclable photothermal evaporator. Cell Reports Physical Science, 2(9), (2021): 100549, https://doi.org/10.1016./j.xcrp.2021.100549Interfacial solar steam generation is emerging as a promising technique for efficient desalination. Although increasing efforts have been made, challenges exist for achieving a balance among a plethora of performance indicators—for example, rapid evaporation, durability, low-cost deployment, and salt rejection. Here, we demonstrate that carbonized manure can convert 98% of sunlight into heat, and the strong capillarity of porous carbon fibers networks pumps sufficient water to evaporation interfaces. Salt diffusion within microchannels enables quick salt drainage to the bulk seawater to prevent salt accumulation. With these advantages, this biomass-derived evaporator is demonstrated to feature a high evaporation rate of 2.81 kg m−2 h−1 under 1 sun with broad robustness to acidity and alkalinity. These advantages, together with facial deployment, offer an approach for converting farm waste to energy with high efficiency and easy implementation, which is particularly well suited for developing regions.This project is supported by the National Science Foundation through grant no. CBET-1941743. This project is based upon work supported in part by the National Science Foundation under EPSCoR Cooperative Agreement no. OIA-1655221

    A novel lipid binding protein is a factor required for MgATP stimulation of the squid nerve Na+/Ca2+ exchanger

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Biochimica et Biophysica Acta - Biomembranes 1788 (2009): 1255-1262, doi:10.1016/j.bbamem.2008.12.016.Here we identify a cytosolic factor essential for MgATP up-regulation of the squid nerve Na+/Ca2+ exchanger. Mass spectroscopy and Western blot analysis established that this factor is a member of the lipocalin super family of lipid binding proteins of 132 amino acids in length. We named it Regulatory protein of the squid nerve sodium calcium exchanger (ReP1-NCXSQ). ReP-1-NCXSQ was cloned, over expressed and purified. Far- UV circular dichroism and infrared spectra suggest a majority of β-strand in the secondary structure. Moreover, the predicted tertiary structure indicates ten β-sheets and two short α- helices characteristic of most lipid binding proteins. Functional experiments showed that in order to be active ReP1-NCXSQ must become phosphorylated in the presence of MgATP by a kinase that is Staurosporin insensitive. Even more, the phosphorylated ReP1-NCXSQ is able to stimulate the exchanger in the absence of ATP. In addition to the identification of a new member of the lipid binding protein family, this work shows, for the first time, the requirement of a lipid binding protein for metabolic regulation of an ion transporting system.The work was supported by Grants from the US National Science Foundation [MCB 0444598], Fondo Nacional para Investigaciones Científicas y Tecnológicas [PICT-05- 12397 and PICT-05-38073], Consejo Nacional de Investigfaciones Científicas y Técnicas [PIP 5118 and PIP 5593] Secretaría de Ciencia y Técnica Universidad Nacional de Córdoba, Argentina, Fondo Nacional para Ciencia y Técnica [S1-9900009046 and G- 2001000637] and Fundación Polar, Venezuela and The Rhode Island Idea Network of Biomedical Research Excellence (INBRE)
    corecore