11,354 research outputs found

    Patterned Responses to Organizing: Case Studies of the Union-Busting Convention

    Get PDF
    [Excerpt] In June 1993, the Industrial Union Department (IUD) of the AFL-CIO initiated a project to gather cases from affiliated unions that would highlight aspects of the National Labor Relations Board process deserving attention from those shaping labor law reform proposals. Based on the cases submitted, we conclude that in its current form the National Labor Relations Act serves to impede union organizing. Particularly problematic are NLRB policies that allow employers to wage no-holds-barred antiunion campaigns. Even where there are legal restrictions on specific actions, the penalties for violations are so meager that they serve no deterrent effect. The cases described below cover many industries, all parts of the country, large units and small, and collectively suggest that union busting has become the convention among U.S. employers

    Effect of Computer Keyboard Slope on Wrist Position and Forearm Electromyography of Typists Without Musculoskeletal Disorders

    Get PDF
    Positioning a computer keyboard with a downward slope reduces wrist extension needed to use the keyboard and has been shown to decrease pressure in the carpal tunnel. However, whether a downward slope of the keyboard reduces electromyographic (EMG) activity of the forearm muscles, in particular the wrist extensors, is not known. Subjects and Methods. Sixteen experienced typists participated in this study and typed on a conventional keyboard that was placed on slopes. Electromyographic activity of the extensor carpi ulnaris (ECU), flexor carpi ulnaris (FCU), and flexor carpi radialis (FCR) muscles was measured with surface electrodes, while the extension and ulnar deviation angles of the right and left wrists were measured with electrogoniometers. Results. Wrist extension angle decreased from approximately 12 degrees of extension while typing on a keyboard with a 7.5-degree slope to 3 degrees of flexion with the keyboard at a slope of –15 degrees. Although the differences were in the range of 1% to 3% of maximum voluntary contraction (MVC), amplitude probability distribution function (APDF) of root-mean-square EMG data points from the ECU, FCU, and FCR muscles varied across keyboard slopes. Discussion and Conclusion. Wrist extension decreased as the keyboard slope decreased. Furthermore, a slight decrease in percentage of MVC of the ECU muscle was noted as the keyboard slope decreased. Based on biomechanical modeling and published work on carpal tunnel pressure, both of these findings appear to be positive with respect to comfort and fatigue, but the exact consequences of these findings on the reduction or prevention of injuries have yet to be determined. The results may aid physical therapists and ergonomists in their evaluations of computer keyboard workstations and in making recommendations for interventions with regard to keyboard slope angle. [Simoneau GG, Marklin RW, Berman JE. Effect of computer keyboard slope on wrist position and forearm electromyography of typists without musculoskeletal disorders. Phys Ther. 2003;83:816–830.

    In an expanding universe, what doesn't expand?

    Get PDF
    The expansion of the universe is often viewed as a uniform stretching of space that would affect compact objects, atoms and stars, as well as the separation of galaxies. One usually hears that bound systems do not take part in the general expansion, but a much more subtle question is whether bound systems expand partially. In this paper, a very definitive answer is given for a very simple system: a classical "atom" bound by electrical attraction. With a mathemical description appropriate for undergraduate physics majors, we show that this bound system either completely follows the cosmological expansion, or -- after initial transients -- completely ignores it. This "all or nothing" behavior can be understood with techniques of junior-level mechanics. Lastly, the simple description is shown to be a justifiable approximation of the relativistically correct formulation of the problem.Comment: 8 pages, 9 eps figure

    Dealing with Limited Overlap in Estimation of Average Treatment Effects

    Get PDF
    Estimation of average treatment effects under unconfounded or ignorable treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used informal methods for trimming the sample. In this paper we develop a systematic approach to addressing lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely, as well as optimally weighted average treatment effects. Under some conditions the optimal selection rules depend solely on the propensity score. For a wide range of distributions a good approximation to the optimal rule is provided by the simple selection rule to drop all units with estimated propensity scores outside the range [0.1, 0.9].Average Treatment Effects, Causality, Unconfoundness, Overlap, Treatment Effect Heterogeneity

    Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand

    Get PDF
    Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used informal methods for trimming the sample. In this paper we develop a systematic approach to addressing such lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely, as well as optimally weighted average treatment effects. Under some conditions the optimal selection rules depend solely on the propensity score. For a wide range of distributions a good approximation to the optimal rule is provided by the simple selection rule to drop all units with estimated propensity scores outside the range [0.1, 0.9].average treatment effects, causality, unconfoundedness, overlap, treatment effect heterogeneity

    Nonparametric Tests for Treatment Effect Heterogeneity

    Get PDF
    A large part of the recent literature on program evaluation has focused on estimation of the average effect of the treatment under assumptions of unconfoundedness or ignorability following the seminal work by Rubin (1974) and Rosenbaum and Rubin (1983). In many cases however, researchers are interested in the effects of programs beyond estimates of the overall average or the average for the subpopulation of treated individuals. It may be of substantive interest to investigate whether there is any subpopulation for which a program or treatment has a nonzero average effect, or whether there is heterogeneity in the effect of the treatment. The hypothesis that the average effect of the treatment is zero for all subpopulations is also important for researchers interested in assessing assumptions concerning the selection mechanism. In this paper we develop two nonparametric tests. The first test is for the null hypothesis that the treatment has a zero average effect for any subpopulation defined by covariates. The second test is for the null hypothesis that the average effect conditional on the covariates is identical for all subpopulations, in other words, that there is no heterogeneity in average treatment effects by covariates. Sacrificing some generality by focusing on these two specific null hypotheses we derive tests that are straightforward to implement.average treatment effects, causality, unconfoundedness, treatment effect heterogeneity

    Nonparametric Tests for Treatment Effect Heterogeneity

    Get PDF
    A large part of the recent literature on program evaluation has focused on estimation of the average effect of the treatment under assumptions of unconfoundedness or ignorability following the seminal work by Rubin (1974) and Rosenbaum and Rubin (1983). In many cases however, researchers are interested in the effects of programs beyond estimates of the overall average or the average for the subpopulation of treated individuals. It may be of substantive interest to investigate whether there is any subpopulation for which a program or treatment has a nonzero average effect, or whether there is heterogeneity in the effect of the treatment. The hypothesis that the average effect of the treatment is zero for all subpopulations is also important for researchers interested in assessing assumptions concerning the selection mechanism. In this paper we develop two nonparametric tests. The first test is for the null hypothesis that the treatment has a zero average effect for any subpopulation defined by covariates. The second test is for the null hypothesis that the average effect conditional on the covariates is identical for all subpopulations, in other words, that there is no heterogeneity in average treatment effects by covariates. Sacrificing some generality by focusing on these two specific null hypotheses we derive tests that are straightforward to implement.

    Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand

    Get PDF
    Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used informal methods for trimming the sample. In this paper we develop a systematic approach to addressing such lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely, as well as optimally weighted average treatment effects. Under some conditions the optimal selection rules depend solely on the propensity score. For a wide range of distributions a good approximation to the optimal rule is provided by the simple selection rule to drop all units with estimated propensity scores outside the range [0.1,0.9].
    corecore