889 research outputs found

    Towards a dynamic rule-based business process

    No full text
    IJWGS is now included in Science Citation Index Expanded (SCIE), starting from volume 4, 2008. The first impact factor, which will be for 2010, is expected to be published in mid 201

    Ehrhart clutters: Regularity and Max-Flow Min-Cut

    Full text link
    If C is a clutter with n vertices and q edges whose clutter matrix has column vectors V={v1,...,vq}, we call C an Ehrhart clutter if {(v1,1),...,(vq,1)} is a Hilbert basis. Letting A(P) be the Ehrhart ring of P=conv(V), we are able to show that if A is the clutter matrix of a uniform, unmixed MFMC clutter C, then C is an Ehrhart clutter and in this case we provide sharp bounds on the Castelnuovo-Mumford regularity of A(P). Motivated by the Conforti-Cornuejols conjecture on packing problems, we conjecture that if C is both ideal and the clique clutter of a perfect graph, then C has the MFMC property. We prove this conjecture for Meyniel graphs, by showing that the clique clutters of Meyniel graphs are Ehrhart clutters. In much the same spirit, we provide a simple proof of our conjecture when C is a uniform clique clutter of a perfect graph. We close with a generalization of Ehrhart clutters as it relates to total dual integrality.Comment: Electronic Journal of Combinatorics, to appea

    Group of point transformations of time dependent harmonic oscillators

    Get PDF
    In general, a physical system has invariant quantities which are very often related to its symmetry and to the invariance of the equation that describe it. A detailed study of the invariance property of the differential equation will be helpful in understanding this relation. The work is concerned with a preliminary investigation of the Lie-group which leaves invariant the Newtonian and Lagrangian equation of motion for a one-dimensional harmonic oscillator. A brief review of Ehrenfest\u27s adiabatic principle and the later treatments on exact and adiabatic invariants will be presented
    • 

    corecore