University of the Pacific Scholarly Commons

Group of point transformations of time dependent harmonic oscillators

Jose Ricardo Bernal
University of the Pacific

Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds
Part of the Mathematics Commons, and the Physics Commons

Recommended Citation

Bernal, Jose Ricardo. (1976). Group of point transformations of time dependent harmonic oscillators. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/1913

This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.

GROUP OF POINT TRANSFORMATIONS OF
TIME DEPENDENT HARMONIC OSCILLATORS
\qquad

A Thesis
submitted to the Graduate Faculty of the University of the Pacific
\qquad

In Partial Fulfillment
of the Requirements for the Degree of Master of science
by
josé Ricardo Bernal F. June, 1976

ACKNOWLEDGEMENTS

I am indebted to Professor Carl E. Wulfman for suggesting this research, his advice and helpful comments.

My greatful appreciation to Sukeyuki Kumei for the many fruitful discussions, his advice and his suggestions in organizing this thesis.

I wish to also thank Professor Robert L. Anderson for examining this thesis.

To Professors Andres Rodriguez and Gaylon Caldwell, my thanks for giving me a chance to study at the University of the Pacific.

I will be forever thankful to my wife Nelly, and Children, Ricardo and Nancy, for their encouragement, company and help during the preparation of this work.

I would like to thank Mrs. Carol S. Sarnoff for her assistance in typing this thesis.

TABLE OF CONTENTS

Page

INTRODUCTION. 1
NOTATIONS PND CONVENTIONS 4
Chapters

1. HISTORICAL SURVEY OF ADIABATIC AND EXACTINVARIANTS.6
2. CONTINUOUS TRANSFORMATION GROUPS. 10
3. ONE-DIMENSIONAL HARMONIC OSCILLATOR 19
4. LIE ALGEBRA40
5. LIMITING BEHAVIOR 49
57
CONCLUSIONS 59
REEERENCES. 62
APPENDIX.

INTRODUCTION

In general, a physical system has invariant quantities which are very often related to its symmetry and to the invariance of the equation that describe it. A detailed study of the invariance property of the differential equation will be helpful in understanding this relation.

The work is concerned with a preliminary investigation of the Lie-group which leaves invariant the Newtonian and Lagrangian equation of motion for a one-dimensional harmonic oscillator. A brief review of Ehrenfest's adiabatic principle and the later treatments on exact and adiabatic invariants will be presented.

The program starts with a historical survey of adiabatic and exact invariants in chapter 1 and a review of the theory of continuous group transformations in Chapter 2.

In Chapter 3, the differential equation of the harmonic oscillator is considered and, by applying Lie's theory, infinitesimal transformations that leave it invariant are sought.

To obtain a better insight into the general characteristics of oscillator type equations, the following particular cases will be studied in detail:

For the equation

$$
\frac{d^{2} x}{d t^{2}}+k(t) x=0
$$

where x is considered as a function of t, t being the ingependent variable:

Case 1

$$
k(t)=\omega^{2}
$$

$\omega=$ constant

Case 2
$k(t)=\omega_{0}^{2}+\alpha t$
ω_{0} and α are constants

Case 3

$$
k(t)=\omega_{o}^{2} e^{\alpha t}
$$

Case 4. For the equation

$$
\frac{\partial^{2} x}{\partial t^{2}}+k x=0
$$

where k and t are considered as independent variables and x as a function of k and t.

Case 5. For the system of equations

$$
\frac{d^{2} x}{d t^{2}}+k x=0
$$

$$
\frac{d k}{d t}-\alpha k=0
$$

t being the independent variable, x and k are functions of t. The generators, labeled U_{m}, and their first and second extensions will in ed that in Case 1 , the set of genIt must be obtained by R. L. Anderson (1974) erators had already been developed by Wulfman and Wybourne ${ }^{l}$ and their classification was developed bin
with the result that the global Jie-group for the harmonic oscillator is $\mathrm{SL}(3, R)$.

Once the generators are found, the program continues in Chapter 4 by calculating the sets of commutators and the metric tensors. It will be found that the Lie algebra closes under the commutation operation in each case. The local Lie-group is semi-simple and still $S L(3, R)$ in Cases 2 and 3. Furthermore, in both Cases 4 and 5, the sub-set of generators obtained by excluding one generator obey the same Lie algebra as in the remaining cases. Finally, Chapter 5 deals with the asymptotic behavior of the generators (as α approaches zero) for the Cases 2, 3 and 5, and it also will be shown that they converge to the generators of the case 1 .

A detailed calculation for the generators in the Case 5, given in the Appendix, closes this work.

notations and Conventions

In this work, a number of symbols are used to represent physical variables. Physical time is represented by the letter t and position by \underline{x}. Unless otherwise would be specifically stated, position's time-derivative is abbrevited by using an over-dot, i.e.

$$
\dot{x} \equiv \frac{d x}{d t}
$$

and the same treatment is followed for all variables which depend only on t; for instance, see \dot{T}_{1} in Eq. (3.9); \dot{A}_{i} in Eq. (3.2-2); \dot{Y}_{o} in Eq. (3.3-3), and so on. Similarly, the k-derivative is abbreviated by an over-star, ie.

$$
\stackrel{*}{J}_{0}(z) \equiv \frac{d}{d k}\left(J_{0}(z)\right), \quad z=z(k)
$$

and a prime denotes the derivative of a function with respect to its argument, egg.:

$$
J_{0}^{\prime}(z) \equiv \frac{d}{d z}\left(J_{0}(z)\right)
$$

It is then evident that

$$
\begin{aligned}
& \dot{A} i(z)=A \dot{\prime}(z) \dot{z} \\
& \dot{J}_{0}^{*}(z)=J_{0}^{\prime}(z) \stackrel{*}{z}
\end{aligned}
$$

When a function of several variables occurs its partial derivatives are denoted by at $\frac{4}{4}$
function, e.g., in Eq. (3.4-8):

Numbered superscripts in parentheses are reserved to denote extensions of generators and their corresponding coefficients.

Numbered subscripts on a symbol denote several parameters of similar kind, egg.: constants of integration, which in some cases are functions of another variable (see Appendix). When a set of variables is transformed into another set, the new variables will be denoted by symbols entirely distinct from the old ones. As usual, $O(\varepsilon)$ denotes any quantity which, as $\varepsilon \rightarrow 0$, approaches zero at least as fast as ε.

1. HISTORICAL SURVEY OF ADIABATIC AND EXACT INVARIANTS

In the earlier years of the present century, physicists were involved in discussions ${ }^{2}$ concerning the constitution of atoms and molecules (Bohr and Sommerfeld theories), the quantum conditions in Planck's treatment of the harmonic oscillator, the apparent paradox between the "classical" Wien's displacement law and "statistical" Planck's radiation law, and many other interesting problems in Physics. Among these Ehrenfest ${ }^{3}$ stated his adiabatic principle ${ }^{4}$ as
"If a system be affected in a reversible adiabatic way, allowed motions are transformed into allowed motions";
this principle involves quantities called adiabatic invariants.* For instance, in problems of arbitrary periodic motions, $2 \bar{T} / \nu$ is an adiabatic invariant, \bar{T} being the mean kinetic energy and ν being the frequency. This adiabatic invariant reduces to E / V in the case of one-dimensional harmonic motions, where E represents the total energy. Sommerfeld's quantum conditions are other examples of adiabatic invariants, when *If the rate of change of a parameter k, in the Hameter is said to vary 6
infinitely slow changes of the parameters in the action or phase integrals are considered.

Many applications of Ehrenfest's adiabatic principle can be found in the literature ${ }^{5}$; perhaps the most outstanding is the explanation of the Stark effect by Schwarzchild and Epstein ${ }^{6}$.

Although adiabatic invariants were recognized to be only approximate to the lowest significant order, the question of whether their constancy might be valid to higher orders seems not to have been considered at that time or in that connection.

Alfven ${ }^{7}$ showed that the magnetic moment of a spiraling particle in a varying magnetic field is a constant to first order of infinitesimal changes in the parameters involved; this was later shown to be true in the next order by Helwig for a general field ${ }^{8}$.

Kulsrud considered a vibrating harmonic oscillator (whose frequency ω is initially constant, then varies in an arbitrary fashion, and finally becomes constant) and found that E / ω is an adiabatic invariant to as many orders as ω has continuous derivatives ${ }^{9}$. Later, Kruskal proved the analogous result for the gyrating particle. Lenard ${ }^{l 0}$ did the same for the anharmonic oscillator, and many others have Settled this last by proving the invariance to all others. ${ }^{1 l}$ Kruskal ${ }^{12}$ unified and simplified all the preceding attempts of finding adiabatic invariants to higher order for Hamiltonian systems whose solutions were pericdic or nearly
periodic. Since Hamilton's equations of motion for a system are a first-order autonomous system, he derived appropriate formal series solutions to such a system of differential equations and proved that the given system had exact solulions for a large range of the independent variable and that the formal series represented the exact solutions asymptotically.

Lewis ${ }^{13}$ applied Kruskal's theory to classical

 and quantum time-dependent harmonic oscillators and found exact invariants in both problems. The results, without using an adiabatic invariance approach, become exact or nonasymptotic. The systems discussed have a Hamiltonian of the form$$
\text { form } \quad \mathrm{H}=\frac{1}{2 \varepsilon}\left(p^{2}+\omega^{2}(t) q^{2}\right)
$$

where q is a canonical coordinate, p is its associated conjugate momentum, $\omega(t)$ is an arbitrary complex function of t, and ε is a positive real parameter. The exact invariants

I are

$$
\begin{equation*}
I=\frac{1}{2}\left\{(q / \rho)^{2}+(p \rho-\varepsilon \dot{\rho} q)^{2}\right\} \tag{1-2}
\end{equation*}
$$

ρ being any function of t that satisfies

$$
\begin{aligned}
& \text { any function } \\
& \varepsilon^{2} \ddot{\rho}+\omega^{2}(t) \rho-(1 / \rho)^{3}=0
\end{aligned}
$$

Several classical examples are given and a brief discussion of a quantum system, whose results reduce to the usual ones for the harmonic oscillator when ω is taken as a positive real constant, closes his application of Kruskal's theory.

A more detailed consideration of the quantum timedependent harmonic oscillator and the problem of a charged particle in a time-dependent electromagnetic field was made by Lewis and Riesenfield. ${ }^{14}$ Explicitly time-dependent invariants, their eigenvalues and eigenstates using operator methods, the connection between eigenstates, and solutions of the schrödinger equation were also found. As a limiting case of the exact invariants, they deduced the sudden and adiabatic approximations.

Using a different approach Symon ${ }^{15}$ investigated a general class of Hamiltonian systems which include both linear and non-linear classical harmonic oscillators. He also carefully defined the terms "exact invariant" and "adiabatic invariant" and calculated such invariants for several forms of the Hamiltonian.

In Classical Mechanics, knowledge of contact transformations, as well as point transformations, admitted by a system, is necessary for a full understanding of the relation between its symmetry properties and the quantities it leaves conserved. For a number of practical reasons I will, however, in this thesis confine my attention to the problem of determining the groups of point transformations that leave invariant the systems in cases 1 through 5 indicated above.

2. CONTINUOUS TRANSFORMATIONS GROUPS

1. The transformation-group of one parameter ${ }^{16}$

Consider a transformation

$$
\begin{equation*}
\bar{x}=f(x, t) \tag{2.1}
\end{equation*}
$$

T:

$$
\bar{t}=g(x, t)
$$

by means of which the point (x, t) is transferred to the new position (\bar{x}, \bar{t}) in the same plane and referred to the same coordinate system. The inverse transformation, namely the operation of transferring the point (\bar{x}, \bar{t}) back to its original position (x, t), is obtained by solving for x and t in terms of \vec{x} and \bar{E}, thus

$$
\begin{equation*}
x=\frac{-1}{f(\bar{x}, \bar{E})} \tag{2.2}
\end{equation*}
$$

$$
T^{-1}:
$$

$$
t=g^{-1}(\bar{x}, \bar{t})
$$

The result of performing the transformations T and T^{-1} in succession, in either order, is the identity transformation

$$
\begin{align*}
& \bar{x}=x \tag{2.3}\\
& \bar{t}=t
\end{align*}
$$

Consider the aggregate of the transformations included in the family

$$
\begin{aligned}
& \bar{x}=f(x, t ; \varepsilon) \\
& \bar{E}=g(x, t ; \varepsilon)
\end{aligned}
$$

where ε is a parameter which can vary continuously over a given range (assuming that f and g are analytic functions of x and t and differentiable with respect to ε in its range). These transformations are said to form a finite continuous group when any two successive transformations of the family are equivalent to a single transformation of the family. It has been assumed that every transformation in the group contains both the identity and the inverse transformations. Under these circumstances, the transformations given in Eq. (2.4) are called a group of one parameter.
2. Infinitesimal transformations

Suppose that $\varepsilon=0$ is the value of the parameter which produces the identity transformation in the group-transformaton law given in Eq. (2.4); thus,

$$
\begin{aligned}
& f(x, t ; 0)=x \\
& g(x, t ; 0)=t
\end{aligned}
$$

If ε is an infinitesimal quantity, the transformations given in Eq. (2.4) will be such that \bar{x} differs only infinitesimally from x, and \bar{E} from t. This transformation will differ only infinitesimally from the identity transformation, and it is called an infinitesimal transformation. Besides, it can be shown ${ }^{17}$ that each one-parameter group has only one infinitesimal transformation. Let

$$
\begin{aligned}
& \bar{x}=x+\varepsilon \xi(x, t) \\
& \bar{t}=t+\varepsilon \eta(x, t)
\end{aligned}
$$

be the equations of the infinitesimal transformations, where

$$
\begin{align*}
& \xi(x, t)=\left(f_{\varepsilon}\right)_{\varepsilon=0} \tag{2.6}\\
& \eta(x, t)=\left(g_{\varepsilon}\right)_{\varepsilon=0} \tag{2.7}
\end{align*}
$$

and consider the variation of any analytic function $F(x, t)$ due to the change produced by the infinitesimal transformation (2.5) on x and t; thus

$$
\begin{aligned}
\Delta F(x, t) & =F(\bar{x}, \bar{t})-F(x, t) \\
& =F(x+\Delta x, t+\Delta t)-F(x, t) \\
& =\varepsilon\left[\xi F_{x}+\eta F_{t}\right] *
\end{aligned}
$$

or

$$
\begin{equation*}
F(\dot{x}, \bar{t})=F(x, t)+\varepsilon U F(x, t) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
u=\xi(x, t) \frac{\partial}{\partial x}+n(x, t) \frac{\partial}{\partial t} \tag{2.9}
\end{equation*}
$$

is called the generator of the infinitesimal transformation, since UF represents it. In particular

$$
\begin{align*}
& U x=\xi(x, t) \tag{2.10}\\
& U t=\eta(x, t)
\end{align*}
$$

so that

$$
\begin{equation*}
\mathrm{UF}=\mathrm{Ux} \cdot \mathrm{~F}_{\mathrm{X}}+\mathrm{Ut} \cdot \mathrm{~F}_{\mathrm{t}} \tag{2.11}
\end{equation*}
$$

*Retaining terms only of the first order in ε.

The function $F(\bar{x}, \bar{t})$ given in Eq. (2.8) may be regarded as a function of x, t and ε; regard x and t as fixed and let the function be expanded as a Maclaurin series in ε. Thus

$$
\begin{equation*}
F(\bar{x}, \bar{t})=F_{0}+F_{0}^{\prime} \varepsilon+\frac{1}{2} F_{0}^{\prime \prime} \varepsilon^{2}+\ldots, \tag{2.12}
\end{equation*}
$$

where

$$
\begin{aligned}
F_{0} & =[F(\bar{x}, \bar{t})]_{\varepsilon=0}=F(x, t) \\
F_{0}^{\prime} & =\left[\frac{\partial F(\bar{x}, \bar{t})}{\partial \varepsilon}\right]_{\varepsilon=0}=\left[F_{\bar{x}} \xi(\bar{x}, \bar{t})+F_{\bar{t}} \eta(\bar{x}, \bar{t})\right]_{\varepsilon=0} \\
& =\frac{\partial F}{\partial x} \xi(x, t)+\frac{\partial F}{\partial t} \eta(x, t)=U F(x, t)
\end{aligned}
$$

and

$$
\begin{aligned}
F_{0}^{\prime \prime}=\left[\frac{\partial^{2} F(\bar{x}, \bar{t})}{\partial \varepsilon^{2}}\right]_{\varepsilon=0} & =[\{\xi(x, t) \partial \bar{x}+ \\
& \left.+\eta(\bar{x}, \bar{t}) \partial \bar{t}\}^{2} F(\bar{x}, \bar{t})\right]_{\varepsilon=0} \\
= & U^{2} F(x, t) .
\end{aligned}
$$

Therefore, Eq. (2.12) becomes

$$
\begin{equation*}
F(\bar{X}, \bar{t})=F(x, t)+\varepsilon U F+\frac{1}{2} \varepsilon^{2} U^{2} F+\ldots \tag{2.13}
\end{equation*}
$$

or, written symbolically,

$$
\begin{align*}
& \text { written symbol } F(\bar{x}, \bar{t})=e^{\varepsilon U} F(x, t) . \tag{2.14}
\end{align*}
$$

In particular, the equations for the infinitesimal trans-
formations are
$\bar{t}=t(x, 10)$ has been used and only terms up to the first
Where Eq. (2.10) order in ε have been retained.

A function $F(x, t)$ is called invariant if, when \bar{x} and \bar{t} are obtained from Eq. (2.5) and for all values of ε

$$
\begin{equation*}
F(\bar{x}, \bar{t})=F(x, t) \tag{2.16}
\end{equation*}
$$

Then, for F to be invariant under the transformation (2.15) it is necessary and sufficient that

$$
\begin{equation*}
U F=\xi \frac{\partial F}{\partial x}+\eta \frac{\partial F}{\partial t}=0 \tag{2.17}
\end{equation*}
$$

3. The extended group

Consider a one-parameter group with transformations given as in Eq. (2.4) and let

$$
\begin{align*}
\dot{\bar{x}} & =\frac{d \bar{x}}{d \bar{t}}=\frac{d f}{d g} \\
& =\frac{f_{t}+f_{x} \dot{x}^{*}}{g_{t}+g_{x} \dot{x}} \equiv f^{(1)}(x, t, \dot{x} ; \varepsilon) \tag{2.18}
\end{align*}
$$

for a fixed value of the parameter ε. Thus in general the equations

$$
\begin{align*}
& \bar{x}=f(x, t ; \varepsilon) \tag{2.19}\\
& \bar{t}=g(x, t ; \varepsilon) \\
& \dot{\bar{x}}=f^{(1)}(x, t, \dot{x} ; \varepsilon)
\end{align*}
$$

form a group ${ }^{\dagger}$, which is known as the first-extended group.

Similarly, let
*See notations and conventions.
These results are easily extended in the case of t These results and higher differentiables and

$$
\begin{align*}
\ddot{\bar{x}} & =\frac{\dot{\mathrm{d}}}{d \bar{t}}=\frac{d f^{(1)}}{d g} \\
& =\frac{f_{t}^{(1)}+f_{x}^{(1)} \dot{x}+f_{\dot{x}}^{(1)} \ddot{x}}{g_{t}+g_{x} \dot{x}} \equiv f^{(2)}(x, t, \dot{x}, \ddot{x} ; \varepsilon) \tag{2.20}
\end{align*}
$$

also for a fixed value of ε. The set of equations

$$
\begin{align*}
& \bar{x}=f(x, t ; \varepsilon) \\
& \bar{E}=g(x, t ; \varepsilon) \tag{2.21}\\
& \dot{\bar{x}}=f^{(1)}(x, t, \dot{x} ; \varepsilon) \\
& \ddot{\bar{x}}=f^{(2)}(x, t, \dot{x}, \ddot{x} ; \varepsilon)
\end{align*}
$$

form a group*, which is known as the second-extended group.
The infinitesimal form of these extensions can be written as

$$
\begin{align*}
& \dot{\bar{x}}=\dot{x}+\varepsilon \xi^{(1)}(x, t, \dot{x}) \tag{2.22}\\
& \ddot{\bar{x}}=\ddot{x}+\varepsilon \xi^{(2)}(x, t, \dot{x}, \ddot{x}) \tag{2.23}
\end{align*}
$$

retaining terms only of the first order in ε and where

$$
\begin{equation*}
\xi^{(1)}(x, t, \dot{x})=\xi_{t}+\dot{x}\left(\xi_{x}-n_{t}\right)-\dot{x}^{2} n_{x} \tag{2.24}
\end{equation*}
$$

and

$$
\begin{align*}
\xi^{(2)}(x, t, \dot{x}, \ddot{x}) & =\xi_{t}^{(1)}+\dot{x} \xi_{x}^{(1)}-\ddot{x}\left(\eta_{t}+\dot{x} \eta_{x}-\xi_{\dot{x}}^{(1)}\right) \\
& =\xi_{t t}+\dot{x}\left(2 \xi_{x t}-n_{t t}\right)+\dot{x}^{2}\left(\xi_{x x^{\prime}}^{\left.-2 \eta_{x t}\right)}\right. \\
& -\dot{x}^{3}\left(n_{x x}\right)+\ddot{x}\left(\xi_{x}-2 n_{t}-3 \dot{x} \eta_{x}\right) \tag{2.25}
\end{align*}
$$

*These results are easily extended in the case of
more than 2 variables and higher differential coefficients.

Then,

$$
\begin{equation*}
u^{(1)}=\xi \partial_{x}+\eta \partial_{t}+\xi^{(1)} \partial_{\dot{x}} \tag{2.26}
\end{equation*}
$$

is the generator of the infinitesimal transformation in the first-extension, and

$$
\begin{equation*}
U^{(2)}=\xi \partial_{x}+n \partial_{t}+\xi^{(1)} \partial_{\mathrm{x}}+\xi^{(2)} \partial_{\ddot{x}} \tag{2.27}
\end{equation*}
$$

is the generator of the infinitesimal transformation of the second extended group.

4. Lie Algebra

There are associated with any r-parameter Lie group r infinitesimal generators which are characterized by their commutation properties. The algebra of the r-dimensional vector space is defined by the requirement that the generators U_{m} satisfy the condition

$$
\begin{align*}
U_{m} U_{n}-U_{n} U_{m} & \equiv\left[U_{m}, U_{n}\right] \tag{2.28}\\
& =c_{m n}^{r} U_{r} .
\end{align*}
$$

Evidently,

$$
\begin{equation*}
c_{m n}^{r}=-c_{n m}^{r} \tag{2.29}
\end{equation*}
$$

where the $C_{m n}^{r}$ are called the structure constants of the algebra. Furthermore, the Jacobi identity:

$$
\begin{align*}
& \text { Furthermore, the Jacobi } \tag{2.30}\\
& \left.\left[x_{m}, x_{n}\right], x_{r}\right]+\left[\left[x_{n}, x_{r}\right], x_{m}\right]+\left[\left[x_{r}, x_{m}\right], x_{n}\right]=0 \\
& (2.30)
\end{align*}
$$

in terms of the structure constants reads

$$
\begin{align*}
& \text { s of the structure } C_{\mathrm{mn}}^{\mathrm{p}} c_{\mathrm{pr}}^{\mathrm{q}}+C_{\mathrm{nr}}^{\mathrm{p}} c_{\mathrm{pm}}^{\mathrm{q}}+C_{\mathrm{rm}}^{\mathrm{p}} c_{\mathrm{pn}}^{\mathrm{q}}=0 \tag{2.31}
\end{align*}
$$

In the problems considered here; the generators have the general form

$$
\begin{equation*}
\mathrm{u}_{\mathrm{m}}=\xi^{\mathrm{m}} \partial_{\mathrm{x}}+\eta^{\mathrm{m}} \partial_{t}+\zeta^{\mathrm{m}} \partial_{\mathrm{k}} \tag{2.32}
\end{equation*}
$$

Then,

$$
\begin{align*}
{\left[U_{m}, U_{n}\right]=} & \left(\xi^{m} \xi_{x}^{n}-\xi^{n} \xi_{x}^{m}+\eta^{m} \xi_{t}^{n}-\eta^{n} \xi_{t}^{m}+\zeta^{m} \xi_{k}^{n}-\zeta^{n} \xi_{k}^{m}\right) \partial_{x}+ \\
& \left(\xi^{m} n_{x}^{n}-\xi^{n} n_{x}^{m}+\eta^{m} n_{t}^{n}-n^{n} \eta_{t}^{m}+\zeta^{m} n_{k}^{n}-\zeta^{n} n_{k}^{m}\right) \partial_{t}+ \\
& \left(\xi^{m} \zeta_{x}^{n}-\xi^{n} \zeta_{x}^{m}+n^{m} \zeta_{t}^{n}-\eta^{n} \zeta_{t}^{m}+\zeta^{m} \zeta_{k}^{n}-\zeta^{n} \zeta_{k}^{m}\right) \partial_{k} \tag{2.33}
\end{align*}
$$

Since the extended generators obey the same commutation relations as the generators ${ }^{18}$, it is only necessary to calculate the commutation relations for the generators.
5. Semi-simple groups

The symmetrical tensor of the second rank*

$$
\begin{equation*}
g_{a b}=c_{a m}^{n} c_{b n}^{m} \tag{2.34}
\end{equation*}
$$

Constructed from structure constants is useful in providing
*Also known as the metric or killing tensor.
a cl.assification of groups. If the group is semi-simple ${ }^{19}$, then

$$
\begin{equation*}
\operatorname{det}\left[g_{a b}\right] \neq 0 \tag{2.35}
\end{equation*}
$$

ONE-DIMENSIONAL HARMONIC OSCILLATOR

Consider Newton's and Lagrange's equation of motion for a one-dimensional harmonic oscillator

$$
\begin{equation*}
s \equiv \ddot{x}+k x=0 \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
k=k(t) \tag{3,2}
\end{equation*}
$$

and let

$$
\begin{equation*}
U^{(2)}=\xi \partial_{x}+n \dot{\partial}_{t}+\xi^{(1)} \partial_{\dot{x}}+\xi^{(2)} \partial_{\dot{x}} \tag{3.3}
\end{equation*}
$$

be the second-extended generator of a transformation-group obtained by seeking infinitesimal transformations of x and t that leave invariant the above equation of motion, ie.

$$
\begin{equation*}
U^{(2)} S=0 \quad \text { whenever } S=0 \tag{3.4}
\end{equation*}
$$

Explicitly, the action of this generator on S is

$$
\left[\xi^{(2)}+k \xi+x \dot{k n}\right]_{S=0}=0
$$

or

$$
\begin{equation*}
\psi_{1}+\psi_{2} \dot{x}+\psi_{3} \dot{x}^{2}+\psi_{4} \dot{x}^{3}=0 \tag{3.5}
\end{equation*}
$$

with

$$
\begin{aligned}
& \psi_{1}=\xi_{t t}+k \xi+\left(2 k n_{t}-k \xi_{x}+\dot{k n}\right) x \\
& \psi_{2}=2 \xi_{x t}-n_{t t}+3 k x n_{x} \\
& \psi_{3}=\xi_{x x}-2 n_{x t} \\
& \psi_{4}=-n_{x x}
\end{aligned}
$$

where the condition $S=0$ (i.e.: $\ddot{x}=-k x$) has been used. Since $\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}$ are functions only of x and t, equation (3.5) holds for all values of the x, t, \dot{x} variables if

$$
\begin{equation*}
\psi_{1}=\psi_{2}=\psi_{3}=\psi_{4}=0 \tag{3.7}
\end{equation*}
$$

Equations (3.6) under condition (3.7) are named the determining equations. The last two of them are easily integrated to give.

$$
\begin{align*}
& n(x, t)=x T_{1}+T_{2} \tag{3.8}\\
& \xi(x, t)=x \dot{T}_{I}+x T_{3}+T_{4} \tag{3.9}
\end{align*}
$$

where the T^{\prime} s are functions only of t. In order to obtain explicit forms of the generators, it is necessary to know $k(t)$. Three special cases will be considered here.

CASE 1. $\underline{k(t)=\omega^{2}=\text { constant. }}$.
This case reduces to the simple harmonic oscillator and a great simplification of the problem is obtained due to the fact that

$$
\begin{equation*}
\dot{\mathrm{k}}=0 \tag{3.1-1}
\end{equation*}
$$

Using Eggs. (3.8), (3.9), (3.1-1) and the first two determining equations, solutions to the T^{\prime} 's are obtained as

$$
\begin{align*}
& T_{1}(t)=a_{1} e^{i \omega t}+a_{2} e^{-i \omega t} \\
& T_{2}(t)=a_{5} e^{2 i \omega t}+a_{6} e^{-2 i \omega t}+a_{7} \tag{3.1-2}\\
& 2 i \omega t+a_{6}(-i \omega) e^{-2 i \omega}
\end{align*}
$$

$$
\begin{aligned}
& T_{2}(t)=a_{5} e^{2 i \omega L}+a_{6} t \\
& T_{3}(t)=a_{5} i \omega e^{2 i \omega t}+a_{6}(-i \omega) e^{-2 i \omega t}+a_{8} \\
&
\end{aligned}
$$

$$
T_{4}(t)=a_{3} e^{i \omega t}+a_{4} e^{-i \omega t},
$$

Anderson (1974) ${ }^{* T h i s}$.
where $a_{1}, a_{2}, \ldots, a_{8}$ are constants. The generators of the infinitesimal transformations can be written as

$$
\mathrm{U}=\sum_{\mathrm{n}=\mathrm{l}}^{8} \mathrm{~b}_{\mathrm{n}} \mathrm{U}_{\mathrm{n}}
$$

with

$$
\begin{aligned}
& U_{1}=i x^{2} e^{i \omega t_{\partial}} x_{x}+\frac{1}{\omega} x e^{i \omega t_{\partial}}{ }_{t} \\
& U_{2}=-i x^{2} e^{-i \omega t_{\partial}}+\frac{1}{\omega} x e^{-i \omega t_{\partial}}{ }_{t} \\
& U_{3}=e^{i \omega t_{\partial}} x_{x} \\
& U_{4}=e^{-i \omega t_{\partial}} x \\
& U_{5}=i x e^{2 i \omega t_{\partial}}+\frac{1}{\omega} e^{2 i \omega t_{\partial}} t_{t} \\
& U_{6}=-i x e^{-2 i \omega t_{\partial}}+\frac{1}{\omega} e^{-2 i \omega t_{\partial}}{ }_{t} \\
& U_{7}=\frac{1}{\omega} \partial_{t} \\
& U_{8}=x \partial_{x}
\end{aligned}
$$

and the b_{n} 's are new constants related directly to above a_{n} 's. It follows from these results that the coefficients of the first-extended generators are

$$
\xi_{\substack{1 \\ 2}}^{(1)}=-\left(\omega x^{2} \mp i x \dot{x}+\frac{1}{\omega} \dot{x}^{2}\right) e^{+i \omega t}
$$

$\xi_{3}^{\xi_{3}}{ }^{(1)}= \pm i \omega e^{+i \omega t}$

$$
\begin{aligned}
& \xi_{5}^{(1)}=-(2 \omega x \pm i \dot{x}) e^{ \pm 2 i \omega t} \\
& 6 \\
& \xi_{7}^{(1)}=0 \\
& \xi_{8}^{(1)}=\dot{x}
\end{aligned}
$$

and for the second-extended generators are

$$
\begin{aligned}
& \xi_{\frac{1}{2}}^{(2)}=-\left\{ \pm i \omega^{2} x^{2}+\frac{3}{\omega} \dot{x}\left(\ddot{x}+\omega^{2} x\right)\right\} e^{ \pm i \omega t} \\
& \xi_{3}^{(2)}=-\omega^{2} e^{+i \omega t} \\
& 4 \\
& \xi_{5}^{(2)}= \pm i\left(4 \omega^{2} x+3 \ddot{x}\right) e^{+2 i \omega t} \\
& 6 \\
& \xi_{7}^{(2)}=0 \\
& \xi_{8}^{(2)}=\ddot{x}
\end{aligned}
$$

CASE 2. $k(t)=\omega_{0}^{2}+\alpha t . \omega_{0}, \alpha$ are constants
Here one obtains

$$
\begin{equation*}
\dot{\mathrm{k}}=\alpha=\text { constant } \tag{3.2-1}
\end{equation*}
$$

and k's higher derivatives vanish. Using Eqs. (3.8), (3.9), (3.2-1) and the first two determining equations, solutions for the T's are obtained as

$$
\begin{aligned}
& T_{1}(t)=a_{1} A i+a_{2} B i \\
& T_{2}(t)=a_{5} A \dot{2}+a_{6} B^{2}+a_{7} A i B i \\
& T_{3}(t)=a_{5} A i \dot{A} i+a_{6} B i \dot{B} i+a_{7} A i \dot{B} i+a_{8} \\
& T_{4}(t)=a_{3} A i+a_{4} B i
\end{aligned}
$$

where $A i, B i$ are the Airy functions ${ }^{20}$ with the argument

$$
\begin{equation*}
z=-\alpha^{-2 / 3}\left(\omega_{0}^{2}+\alpha t\right) \tag{3.2-3}
\end{equation*}
$$

Hence,

$$
\dot{z}=-\alpha^{1 / 3}
$$

and ${ }^{2} \mathbf{i}^{2}, A i B i, ~ B i \quad$ are products of these functions. Again, the generators can be taken as

$$
\mathrm{U}=\sum_{\mathrm{n}=1}^{8} \mathrm{~b}_{\mathrm{n}} \mathrm{U}_{\mathrm{n}}
$$

with

$$
\begin{align*}
& U_{1}=\sqrt{\pi / \dot{z}}\left\{x^{2} \dot{A} i^{2} \partial_{x}+x A i \partial_{t}\right\} \\
& \mathrm{U}_{2}=\sqrt{\pi / \dot{z}}\left\{\mathrm{x} \dot{\mathrm{~B}}^{2} \partial_{\mathrm{x}}+\mathrm{xBi} \partial_{\mathrm{t}}\right\} \\
& \mathrm{U}_{3}=\sqrt{\pi / \dot{z}}\left\{\mathrm{Ai} \partial_{\mathrm{x}}\right\} \\
& \mathrm{U}_{4}=\sqrt{\pi / \dot{z}}\left\{\mathrm{Bi} \partial_{\mathrm{x}}\right\} \\
& 2 \\
& U_{5}=\pi / \dot{z}\left\{X A i \dot{A} i \partial_{x}+A i \partial_{t}\right\} \tag{3.2-5}\\
& U_{6}=\pi / \dot{z}\left\{x B i \dot{B} i \partial_{x}+B i \partial_{t}\right\} \\
& U_{7}=\pi / \dot{z}\left\{x A i \dot{B} i \partial_{x}+\operatorname{AiBi} \partial_{t}\right\} \\
& \mathrm{U}_{8}=\mathrm{x}_{\mathrm{x}} .
\end{align*}
$$

The first extensions are
$E_{I}^{(1)}=-\sqrt{\pi / \dot{Z}}\left\{x^{2} k A i-x \dot{x} \dot{A} i+\dot{x}^{2} A i\right\}$
$\xi_{2}^{(1)}=-\sqrt{\pi / \dot{Z}}\left\{x^{2} k B i-x \dot{x} \dot{B} i+\dot{x}^{2} B i\right\}$
$\xi_{3}^{(1)}=\sqrt{\pi / \dot{2}}\{\dot{A} i\}$
$\xi_{4}^{(1)}=\sqrt{\pi / \dot{z}}\{\dot{B} \dot{ }\}$
$\xi_{5}^{(1)}=-(\pi / \dot{Z}) \quad\left\{x\left[k A i^{2}-(\dot{A} i)^{2}\right]+\dot{x A i A} \dot{A}\right\}$
$\xi_{6}^{(1)}=-(\pi / \dot{Z}) \quad\left\{x\left[k B \dot{C}-(\dot{B i})^{2}\right]+\dot{x B i} \dot{B i}\right\}$
$\xi_{7}^{(1)}=-(\pi / \dot{Z})\{x[k A i B i-\dot{A} i \dot{B} i]+\dot{x} A i \dot{B} i\}+\dot{x}$ $\xi_{8}^{(1)}=\dot{x}$.

The second extensions are

$$
\begin{aligned}
& \xi_{1}^{(2)}=-\sqrt{\pi / \dot{z}}\left\{x^{2}(\alpha A i+k \dot{A} i)+3 \dot{x A i}(\ddot{x}+k x)\right\} \\
& \xi_{2}^{(2)}=-\sqrt{\pi / \dot{z}}\left\{x^{2}(\alpha B i+k \dot{B} i)+3 \dot{x} B i(\ddot{x}+k x)\right\} \\
& \xi_{3}^{(2)}=-\sqrt{\pi / \dot{z}}\{k A i\} \\
& \xi_{4}^{(2)}=-\sqrt{\pi / z}\{k B i\} \\
& \xi_{5}^{(2)}=-(\pi / \dot{z})\{x A i(\alpha A i+k \dot{A} i)+3 A i \dot{A} i \quad(\ddot{x}+k x)\} \\
& \xi_{6}^{(2)}=-(\pi / \dot{z})\{x B i(\alpha B i+k \dot{B} i)+3 B i \dot{B} i(\ddot{x}+k x)\} \\
& \xi_{7}^{(2)}=-(\pi / \dot{z})\{x A i(\alpha B i+k \dot{B} i)+3 A i \dot{B} i(\ddot{x}+k x)\}+ \\
& \xi_{8}^{(2)}=\ddot{x} .
\end{aligned}
$$

CASE 3. $k(t)=\omega_{0}^{2} e^{\alpha t} \cdot \omega \quad$ and α are constants.
In this case,

$$
\begin{equation*}
\mathrm{k}=\alpha \mathrm{k} \tag{3.3-1}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{\mathrm{k}}=\alpha^{2} \mathrm{k} \tag{3.3-2}
\end{equation*}
$$

The corresponding solutions for the T's become

$$
\begin{aligned}
& T_{1}(t)=a_{1} J_{0}+a_{2} Y_{0} \\
& T_{2}(t)=a_{5} J_{0}^{2}+a_{6} Y_{0}^{2}+a_{7} J_{0} Y_{0} \\
& T_{3}(t)=a_{5} J_{0} \dot{J}_{0}+a_{6} Y_{0} \dot{Y}_{0}+a_{7} J_{0} \dot{Y}_{0}+a_{8} \\
& T_{4}(t)=a_{3} J_{0}+a_{4} Y_{0}
\end{aligned}
$$

where J_{0}, Y_{0} * are the Bessel and Hankel functions, respecttively, ${ }^{2 l}$ with the argument

$$
z=\frac{2}{\alpha} \omega_{0} e^{\frac{1}{2} \alpha t}
$$

Hence,

$$
\begin{align*}
\dot{z} & =\omega_{0} e^{\frac{1}{2} \alpha t} \tag{3.3-5}\\
& =\sqrt{k}
\end{align*}
$$

and $J_{O}^{2}, J_{O} Y_{O}, Y_{O}^{2}$ denote products of these functions.

The generators U are

$$
U=\sum_{n=1}^{8} b_{n} U_{n}
$$

${ }^{J_{O}}$ and Y_{0} are two independent solutions to Bessel's
D. E. of order $v=0$.
with

$$
\begin{align*}
& U_{1}=\frac{1}{\sqrt{\alpha}}\left\{x^{2} \dot{J}_{0} \partial_{x}+x J_{0} \partial_{t}\right\} \\
& U_{2}=\frac{1}{\sqrt{\alpha}}\left\{x^{2} \dot{Y}_{0} \partial_{x}+x Y_{0} \partial_{t}\right\} \\
& U_{3}=\frac{1}{\sqrt{\alpha}}\left\{J_{0} \partial_{x}\right\} \\
& U_{4}=\frac{1}{\sqrt{\alpha}}\left\{Y_{0} \partial_{x}\right\} \tag{3.3-6}\\
& U_{5}=\frac{1}{\alpha}\left\{x J_{0} \dot{J}_{0} \partial_{x}+J_{0}^{2} \partial_{t}\right\} \\
& U_{6}=\frac{1}{\alpha}\left\{x Y_{0} \dot{Y}_{0}{ }^{2} x+Y_{0}^{2} \partial_{t}\right\} \\
& U_{7}=\frac{1}{\alpha}\left\{x J_{0} Y_{0}{ }^{\partial} x+J_{0} Y_{0} \partial_{t}\right\} \\
& U_{8}=x \partial_{x} \cdot
\end{align*}
$$

The first extensions of these generators are

$$
\xi_{1}^{(1)}=-\frac{1}{\sqrt{\alpha}}\left\{\mathrm{x}^{2} \mathrm{k} J_{0}-\mathrm{x} \dot{\mathrm{x}} \dot{J}_{0}+\dot{\mathrm{x}}^{2} J_{0}\right\}
$$

$$
\xi_{2}^{(1)}=-\frac{1}{\sqrt{\alpha}}\left\{\mathrm{x}^{2} \mathrm{k} Y_{0}-x \dot{x} \dot{Y}_{0}+\dot{x}^{2} Y_{o}\right\}
$$

$$
\xi_{3}^{(1)}=\frac{1}{\sqrt{\alpha}}\left\{\dot{J}_{0}\right\}
$$

$$
\xi_{4}^{(1)}=\frac{1}{\sqrt{\alpha}}\left\{\dot{Y}_{0}\right\}
$$

$$
\xi_{5}^{(1)}=-\frac{1}{\alpha}\left\{x\left[k J_{0}^{2}-\left(\dot{J}_{0}\right)^{2}\right]+\dot{x} J_{0} \dot{J}_{0}\right\}
$$

$$
\begin{aligned}
& \xi_{6}^{(1)}=-\frac{1}{\alpha}\left\{x\left[k Y_{0}^{2}-\left(\dot{Y}_{0}\right)^{2}\right]+\dot{x} Y_{0} \dot{Y}_{0}\right\} \\
& \xi_{7}^{(1)}=-\frac{1}{\alpha}\left\{x\left[k J_{0} Y_{0}-\dot{J}_{0} \dot{Y}_{0}\right]+\dot{x} J_{0} \dot{Y}_{0}\right\}+\dot{x} \\
& \xi_{8}^{(1)}=\dot{x}
\end{aligned}
$$

and the second extensions are found to be

$$
\begin{aligned}
& \xi_{1}^{(2)}=-\frac{1}{\sqrt{\alpha}}\left\{x^{2} k\left(\alpha J_{0}+\dot{J}_{0}\right)+3 \dot{x} J_{0}(\ddot{x}+k x)\right\} \\
& \xi_{2}^{(2)}=-\frac{1}{\sqrt{\alpha}}\left\{x^{2} k\left(\alpha Y_{0}+\dot{Y}_{0}\right)+3 \dot{x} Y_{0}(\ddot{x}+k x)\right\} \\
& \xi_{3}^{(2)}=-\frac{1}{\sqrt{\alpha}}\left\{k J_{0}\right\} \\
& \xi_{4}^{(2)}=-\frac{1}{\sqrt{\alpha}}\left\{k Y_{0}\right\} \\
& \xi_{5}^{(2)}=-\frac{1}{\alpha}\left\{x k J_{0}\left(\alpha J_{0}+\dot{J}_{0}\right)+3 J_{0} \dot{J}_{0}(\ddot{x}+k x)\right\} \\
& \xi_{6}^{(2)}=-\frac{1}{\alpha}\left\{x k Y_{0}\left(\alpha Y_{0}+\dot{Y}_{0}\right)+3 Y_{0} \dot{Y}_{0}(\ddot{x}+k x)\right\} \\
& \xi_{7}^{(2)}=-\frac{1}{\alpha}\left\{x k J_{0}\left(\alpha Y_{0}+\dot{Y}_{0}\right)+3 J_{0} \dot{Y}_{0}(\ddot{x}+k x)\right\}+ \\
&
\end{aligned}
$$

$$
\xi_{8}^{(2)}=\ddot{x}
$$

$$
\begin{aligned}
& \xi_{8}^{(2)}=\ddot{x} \cdot \\
& \text { In the following two cases, the equation of motion }
\end{aligned}
$$

for the harmonic oscillator is investigated from two different standpoints. The analyses are conceptually different from the previous three cases, and the reestablishment of determining equations is necessary.

CASE 4. k an independent variable.
Consider the equation of motion

$$
\begin{equation*}
s \equiv \frac{\partial^{2} x}{\partial t^{2}}+k x=0 \tag{3.4-1}
\end{equation*}
$$

where x is a function of (t, k). Let

$$
\begin{align*}
& \bar{x}=x+\varepsilon \xi \\
& \bar{t}=t+\varepsilon \eta \tag{3.4-2}\\
& \bar{k}=k+\varepsilon \zeta
\end{align*}
$$

be infinitesimal transformations generated by

$$
\mathrm{U}=\xi \partial_{\mathrm{x}}+n \partial_{\mathrm{t}}+\zeta \partial_{\mathrm{k}}
$$

(where ξ, η and ζ are functions of (x, t, k)) that leaves invariant S; ie.

$$
\text { US }=0 \quad \text { whenever } \quad S=0
$$

Since the equation under study is of second-order, it is neceswary to use the first and second extensions of the generators*

$$
\begin{align*}
U^{(1)} & =U+\xi^{(1) \partial} \dot{x} \tag{3.4-5}\\
U^{(2)} & =U^{(1)}+\xi^{(2)} \partial_{\ddot{x}} \tag{3.4-6}\\
& =\xi \partial_{x}+n \partial_{t}+\zeta \partial_{k}+\xi^{(1)} \partial_{\dot{x}}+\xi^{(2)} \partial_{\ddot{x}}
\end{align*}
$$

where ${ }^{22}$ Since s does not involve k-derivat be considered in these extensions. ${ }^{2} k k^{\prime} \partial_{k}^{*}$,

$$
\begin{aligned}
& \xi^{(1)}(x, t, k, \dot{x}, \dot{x})=\xi_{t}+\dot{x}\left(\xi_{x}-\eta_{t}-\dot{x} \eta_{x}\right) \\
& -\stackrel{*}{x}\left(\dot{x} \zeta_{x}+\zeta_{t}\right) \\
& \xi^{(2)}\left(x, t, k, \dot{x}, \stackrel{*}{x}, \ddot{x}, \dot{x}_{x}^{*}\right)=\xi_{t}^{(1)}+\dot{x} \xi_{x}^{(1)}+\ddot{x}\left(\xi_{\dot{x}}^{(1)}-\eta_{t}-\dot{x} \eta_{x}\right) \\
& +\dot{x}^{*}\left(\xi_{x}^{(1)}-\zeta_{t}-\dot{x} \zeta_{x}\right) . \\
& =\xi_{t t}+\dot{x}\left(2 \xi_{x t}-\eta_{t t}\right)-2 \dot{x} \dot{x}_{x t} \\
& -2 \ddot{x} \dot{x}^{*} \zeta_{x}+\dot{x}^{2}\left(\xi_{x x}-2 \eta_{x t}\right)-\dot{x}^{2 *}{ }_{x} \zeta_{x x} \\
& -\dot{x}^{3} \eta_{x x}-\stackrel{*}{x} \zeta_{t t}-{\stackrel{*}{x}{ }^{*} \zeta_{t}} \\
& +\ddot{x}\left(\xi_{x}-2 n_{t}-3 \dot{x} \zeta_{x}-{ }^{*} \zeta_{x}\right) \\
& \text { (3.4-9) }
\end{aligned}
$$

The action of $U^{(2)}$ on S is then

$$
\left\{\xi^{(2)}+k \xi+x \zeta\right\}_{S=0}=0
$$

Using Eq. (3.4-9), one obtains

$$
\begin{align*}
\psi_{1}+\dot{x} \psi_{2}+\stackrel{*}{x} \psi_{3} & +\dot{x}^{2} \psi_{4}+\dot{x}^{3} \psi_{5}+\stackrel{\dot{x}^{*} \psi_{6}}{ }+\stackrel{\dot{x} \times}{x} \psi_{7} \\
& +\dot{x}^{2} \stackrel{*}{x} \psi_{8}+\dot{x} \dot{x} \psi_{9}^{*}=0 \tag{3.4-10}
\end{align*}
$$

with

$$
\begin{align*}
& \psi_{1}=\xi_{t t}+k \xi+x \zeta-k x\left(\xi_{x}-2 n_{t}\right) \\
& \psi_{2}=2 \xi_{x t}-n_{t t}+3 k x n_{x} \\
& \psi_{3}=k x \zeta_{x}-\zeta_{t t} \\
& \psi_{4}=\xi_{x x}-2 n_{x t} \tag{3.4-11}\\
& \psi_{5}=-\eta_{x x} \\
& \psi_{6}=-2 \zeta_{t} \\
& \psi_{7}=-2 \zeta_{x t} \\
& \psi_{8}=-\zeta_{x x} \\
& \psi_{9}=-2 \zeta_{x}
\end{align*}
$$

As a consequence of the independence of the variables,

$$
\begin{aligned}
& \mathrm{U}_{5}= \pm i x e^{+2 i \sqrt{k} t_{\partial_{x}}+\frac{1}{\sqrt{k}} e^{ \pm 2 i \sqrt{k} t_{\partial}}{ }_{t}} \\
& U_{7}=\frac{1}{\sqrt{k}} \partial_{t} \\
& U_{8}=x \partial_{x} \\
& U_{9}=-t \partial_{t}+2 k \partial_{k} .
\end{aligned}
$$

The first eight generators are the same as those obtained in S.H.O. problem (Case l, Eq. (3.1-3)) with $k=\omega^{2}$. Their first and second extensions are, then, given in Eqs. (3.1-4), (3.1-5). For the remaining generator, U_{9}, these extensions read

$$
\begin{equation*}
\xi_{9}^{(1)}=\dot{x} \tag{3.4-15}
\end{equation*}
$$

$$
\begin{equation*}
\xi_{9}^{(2)}=2 \ddot{x} \tag{3.4-16}
\end{equation*}
$$

CASE 5. k a dependent variable.
Instead of

$$
\ddot{x}+k(t) x=0, \quad k(t)=\omega_{0}^{2} e^{\alpha t}
$$

let the following set of equations be considered:

$$
\begin{align*}
& \ddot{x}+k x=0 \tag{3.5-1}\\
& \dot{k}-\alpha k=0 \tag{3.5-2}
\end{align*}
$$

where x and k are functions of t, α constant and k is treated as a dependent variable. Let

$$
\begin{align*}
& \bar{x}=x+\varepsilon \xi \tag{3.5-3}\\
& \bar{t}=t+\varepsilon n \\
& \bar{k}=k+\varepsilon \zeta
\end{align*}
$$

be infinitesimal transformations generated by

$$
\begin{equation*}
\mathrm{U}=\xi \partial_{\mathrm{x}}+n \partial_{\mathrm{t}}+\zeta \partial_{\mathrm{k}} \tag{3.5-4}
\end{equation*}
$$

leaving invariant the system of equations (3.5-1), (3.5-2), ie.
whenever $\ddot{x}+k x=0$

$$
\mathrm{U}(\ddot{\mathrm{x}}+\mathrm{kx})=0
$$

$U(\dot{k}-\alpha k)=0 \quad$ of (x, t, k).
here ξ, η and ζ are fungibles involved in the problem, it Because of the var ions of u is necessary to consider first and second such that

$$
u^{(I)}=U+\xi^{(I)} \partial_{\dot{x}}+\zeta^{(1) \partial_{\dot{k}}}
$$

and

$$
\begin{align*}
U^{(2)}= & U^{(1)}+\xi^{(2)} \partial_{\ddot{x}} \\
= & \xi \partial_{x}+n \partial_{t}+\zeta \partial_{k}+\xi^{(1)} \partial_{\dot{x}} \\
& +\zeta^{(1)} \partial_{\dot{k}}+\xi^{(2)} \partial_{\ddot{x}} \tag{3.5-8}
\end{align*}
$$

where

$$
\begin{gather*}
\xi^{(1)}=\xi_{t}+\dot{x}\left(\xi_{x}-\eta_{t}\right)+\dot{k} \xi_{k}-\dot{x} \dot{k} \eta_{k}-\dot{x}^{2} \eta_{x} \tag{3.5-9}\\
\zeta^{(1)}=\zeta_{t}+\dot{k}\left(\zeta_{k}-\eta_{t}\right)+\dot{x} \zeta_{x}-\dot{x} \dot{k} \eta_{x}-\dot{k}^{2} \eta_{k} \\
\xi^{(2)}=\xi_{t}^{(1)}+\dot{x} \xi_{x}^{(1)}+\dot{k} \xi_{k}^{(1)}+\ddot{\mathrm{k}} \xi_{\dot{k}}^{(1)} \\
\quad-\ddot{x}\left(n_{t}-\xi_{\dot{x}}^{(1)}+\dot{x} \eta_{x}+\dot{k} n_{k}\right)
\end{gather*}
$$

or

$$
\begin{aligned}
\xi^{(2)} & =\xi_{t t}+\dot{x}\left(2 \xi_{x t}-\eta_{t t}\right)+2 \dot{k} \xi_{k t}+2 \dot{x} \dot{k}\left(\xi_{x k}-\eta_{k t}\right) \\
& +\dot{x}^{2}\left(\xi_{x x}-2 \eta_{x t}\right)-2 \dot{x}^{2} \dot{k} \eta_{x k}+\dot{k}^{2} \xi_{k k}-\dot{x} \dot{k}^{2} \eta_{k k} \\
& -\dot{x}^{3} \eta_{x x}+\ddot{x}\left(\xi_{x}-2 \eta_{t}-3 \dot{x} \eta_{x}-2 \dot{k} \eta_{k}\right)+\ddot{k}\left(\xi_{k}-\dot{x} \eta_{k}\right)
\end{aligned}
$$

(3.5-12)

The action of $U^{(2)}$ on Eqs. (3.5-1), (3.5-2) implies

$$
\begin{aligned}
& \left\{\xi^{(2)}+x \zeta+k \xi\right\}_{\dot{x}=-k x}=0 \\
& \left\{\zeta^{(1)}-\alpha \zeta\right\}_{\dot{k}=\alpha k}=0 .
\end{aligned}
$$

Use of Eqs. (3.5-10), (3.5-12) in Eqs. (3.5-13) gives

$$
\begin{aligned}
& \psi_{1}+\dot{x} \psi_{2}+\dot{x}^{2} \psi_{3}+\dot{x}^{3} \psi_{4}=0 \\
& \psi_{5}+\dot{x} \psi_{6}=0
\end{aligned}
$$

with

$$
\begin{aligned}
\psi_{1}=\xi_{t t} & +k\left(\xi+2 \alpha \xi_{t k}\right)+\alpha^{2} k\left(\xi_{k}+k \xi_{k k}\right) \\
& +x\left\{\zeta+k\left(2 \eta_{t}-\xi_{x}\right)+2 \alpha k^{2} \eta_{k}\right\} \\
\psi_{2}= & 2 \xi_{x t}-n_{t t}+2 \alpha k\left(\xi_{x k}-\eta_{t k}\right)-\alpha^{2} k\left(\eta_{k}+k \eta_{k k}\right) \\
& +3 k x n_{x}
\end{aligned}
$$

$$
\begin{equation*}
\psi_{3}=\xi_{x x}-2 n_{x t}-2 \alpha k n_{x k} \tag{3.5-15}
\end{equation*}
$$

$$
\psi_{4}=-n_{x x}
$$

$$
\begin{aligned}
& \psi_{4}=-n_{x x} \\
& \psi_{5}=\zeta_{t}-\alpha \zeta+\alpha k\left(\zeta_{k}-n_{t}\right)-\alpha^{2}{ }^{2} n_{k}
\end{aligned}
$$

$$
\psi_{6}=\zeta_{x}-\alpha k n_{x}
$$

Again, as a consequence of the independence of the variables, the general solution to ERS. (3.5-14) is found if

$$
\psi_{1}=\psi_{2}=\ldots=\psi_{6}=0
$$

from which the generator is*

$$
\begin{equation*}
U=\sum_{n=1}^{9} \Omega_{n} U_{n} \tag{3.5-17}
\end{equation*}
$$

where Ω_{n} is any function with argument $\mathrm{y}=\frac{1}{2}(\alpha \mathrm{t}-\ln k)$. The U_{n} are

$$
\begin{aligned}
& U_{1}=\frac{l}{\sqrt{\alpha}}\left\{\alpha x^{2} k{ }^{*}{ }_{0} \partial_{x}+x J_{0} \partial_{t}+\alpha x k J_{0} \partial_{k}\right\} \\
& U_{2}=\frac{1}{\sqrt{\alpha}}\left\{\alpha X^{2} k \stackrel{*}{Y}_{o} \partial_{X}+X Y_{o} \partial_{t}+\alpha x k Y_{o} \partial_{k}\right\} \\
& U_{3}=\frac{1}{\sqrt{\alpha}} \quad\left\{J_{0} \partial_{x}\right\} \\
& U_{4}=\frac{1}{\sqrt{\alpha}}\left\{Y_{0}{ }^{\partial} X^{\}}\right. \\
& U_{5}=\frac{1}{\alpha}\left\{\alpha x k J_{0} \stackrel{\star}{J}_{0} \partial_{x}+J_{o}^{2} \partial_{t}+\alpha k J_{0}^{2} \partial_{k}\right\} \\
& U_{6}=\frac{1}{\alpha}\left\{\alpha x k Y_{o} \stackrel{Y}{Y}_{o}^{*} \partial_{x}+Y_{o}^{2} \partial_{t}+\alpha k Y_{o}^{2} \partial_{k}\right\} \\
& U_{7}=\frac{1}{\alpha}\left\{\alpha x k J_{0} \stackrel{*}{Y}_{0} \partial_{X}+J_{0} Y_{0} \partial_{t}+\alpha k J_{0} Y_{0} \partial_{k}\right\} \\
& \mathrm{U}_{8}=\left\{\mathrm{xa}_{\mathrm{x}}\right\} \\
& U_{9}=\left\{\partial_{t}\right\},
\end{aligned}
$$

J_{0} and Y_{0} being the Bessel and Hankel functions (of order 0), respectively, with the argument

$$
z=\frac{2}{\alpha} \sqrt{k}
$$

and the over-star means their derivative with respect to k.
*Further details are given in Appendix.

The coefficients of the first extensions are

$$
\begin{aligned}
& \xi_{3}^{(1)}=\alpha^{-1 / 2}\left\{\dot{\mathrm{k}}\left(\stackrel{\stackrel{\star}{\mathrm{~J}}}{\left({\underset{\mathrm{Y}}{\mathrm{o}}}_{\mathrm{*}}^{0}\right.}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3.5-20) } \\
& \xi_{7}^{(1)}=-\alpha^{-2}\left\{x \dot{k} J_{0} Y_{0}-\alpha^{2} x k \dot{k} \stackrel{\star}{J}_{0}^{\stackrel{*}{Y}_{0}}+\alpha(2 \dot{k}-\alpha k) J_{0}{ }_{0}^{*}+\right. \\
& \left.+\frac{\alpha}{k} \dot{\mathrm{k}} \dot{\mathrm{x}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \xi_{8}^{(1)}=\dot{x} \\
& \xi_{9}^{(1)}=0
\end{aligned}
$$

and

$$
\begin{align*}
& \zeta_{3}^{(1)}=\zeta_{4}^{(1)}=\zeta_{8}^{(1)}=\zeta_{9}^{(1)}=0 \tag{3.5-21}
\end{align*}
$$

$$
\begin{aligned}
& \zeta \eta_{7}^{(1)}=\alpha^{-1}\left\{\alpha \dot{k} \omega Y_{O}-2(\dot{\mathrm{k}}-\alpha \mathrm{k}) \dot{\mathrm{k}} \sigma_{0} \stackrel{*}{Y}_{O}+\frac{1}{\mathrm{k}}(\dot{\mathrm{k}}-\alpha \mathrm{k}) \dot{\mathrm{k}}\right\} .
\end{aligned}
$$

The result of calculating the coefficients of the second extensions is

$$
\begin{aligned}
& {\underset{2}{1}}_{(2)}^{(2)} \frac{1}{\sqrt{\alpha}}\left\{\frac { 1 } { \alpha ^ { 2 } k } \left[(\dot{k}-\alpha k) x \dot{x} \dot{k}-\alpha x^{2}{ }_{k} \ddot{\mathrm{k}}\right.\right. \\
& -3 \alpha k x(\alpha \ddot{x}+x \dot{k})]\left({ }_{Y_{0}}^{J}\right) \\
& -\frac{1}{\alpha k}\left[2 \alpha k(\dot{k}-\alpha k)\left(x \ddot{x}+\dot{x}^{2}\right)-(\alpha \dot{x}-k x) x \dot{k}^{2}\right.
\end{aligned}
$$

$$
\begin{align*}
& -\left[2(\alpha k-\dot{k}) \dot{x} \dot{k}+\alpha_{x}\left(k \ddot{k}-\dot{k}^{2}\right)\right]\left(\begin{array}{c}
\hat{\mathrm{Y}}_{\mathrm{O}}^{2}
\end{array}\right. \tag{3.5-22}\\
& +\frac{1}{\alpha k}\left[4 x k \dot{k}^{2}+2 \alpha \dot{x}\left(k \dot{k}-\dot{k}^{2}\right)+\alpha k \ddot{x}(4 \dot{k}-\alpha k)\right] \underset{Y_{0}}{\substack{\mathcal{J}_{0}^{*} \\
Y_{0}^{*}}} \\
& \xi_{7}^{(2)}=-\frac{1}{\alpha}\left\{\frac{1}{\alpha^{2}}[2(\alpha k-\dot{k}) \dot{x} \dot{k}+\alpha x k \dot{k}] J_{0} Y_{O}\right. \\
& -\left[2(\alpha k-k) \dot{x} \dot{k}+\alpha x\left(k \ddot{k}-\dot{k}^{2}\right)\right] \stackrel{*}{J}_{0}^{Y_{0}} \\
& +\frac{1}{\alpha k}\left[4 x k \dot{k}^{2}+2 \alpha \dot{x}\left(k \ddot{k}-\dot{k}^{2}\right)+\alpha k \ddot{x}(4 \dot{k}-\alpha k)\right] J_{0} \stackrel{*}{Y}_{0} \\
& \left.-\frac{1}{\alpha k^{2}}\left[\alpha \dot{x}\left(k \dot{k}-\dot{k}^{2}\right)+2 k \dot{k}(\alpha \ddot{x}+x \dot{k})\right]\right\} \text {. }
\end{align*}
$$

$\xi_{8}^{(2)}=\ddot{x}$
$\xi_{9}^{(2)}=0$.

4. LIE ALGEBRA

In order to obtain the classification of the Lie Algebra involved in the above problems, a study of commutators and metric tensors must be developed.

The set of commutation relations for generators U_{m} listed in Eqs. $(3.1-3),(3.2-5),(3.3-6),(3.4-14),(3.5-18)$, are given in Tables 1 and 2. Cases 1 and 4 have the same commutator table between $U_{1}, U_{2}, \ldots, U_{8}$ in each case, and the extra generator U_{9} (Case 4) commutes with every one as is seen in Table 1. The same situation occurs with U_{9} (Case 5) and the set of commutators for Cases 2, 3, 5 are written in Table 2. These results show that the algebra is closed in each Case.

The metric tensors are constructed, using the structore constants deduced from these tables, and their forms are given below the corresponding Table. Furthermore, in Cases 1 and 4 ,
$\operatorname{det}\left[g_{a b}\right]=-\frac{(12)^{9}}{9} \neq 0 \quad a, b=1,2, \ldots, 8, \quad$ (4.1)
$\operatorname{det}\left[g_{a b}\right]=-12(6)$ ran's criterion, that the which indicate, according to case. eight-parameter group is semi-simple in each case.

As is noticed in Matrices 1 and 2, the metric tensors are non-diagonal. Linear combinations of generators can be taken, which will reduce them to diagonal form and a solustion to an eigenvalue problem provides the standard form of the generators. Each case is studied separately.

CASES 1, 4.* Let

$$
\begin{align*}
& Q_{1}=-\frac{1}{2}\left\{U_{1}+U_{2}+i\left(U_{3}-U_{4}\right)\right\} \\
& Q_{2}=\frac{1}{2}\left\{U_{1}+U_{2}-i\left(U_{3}-U_{4}\right)\right\} \\
& Q_{3}=\frac{1}{2}\left\{-i\left(U_{1}-U_{2}\right)+U_{3}+U_{4}\right\} \\
& Q_{4}=\frac{1}{2}\left\{i\left(U_{1}-U_{2}\right)+U_{3}+U_{4}\right\} \tag{4.3}\\
& Q_{5}=U_{7} \\
& Q_{6}=U_{8} \\
& Q_{7}=\frac{1}{2} i\left(U_{6}-U_{5}\right) \\
& Q_{8}=\frac{1}{2}\left(U_{5}+U_{6}\right)
\end{align*}
$$

be a linear combination of generators listed in Eq. (3.1-3). The "new" set of generators is \dagger

$$
\begin{aligned}
& Q_{1}=\left(1 \pm x^{2}\right) \sin \omega t \partial_{x} \mp \frac{1}{\omega} x \cos \omega t \partial_{t} \\
& Q_{3}=\left(1 \pm x^{2}\right) \cos \omega t \partial_{x} \pm \frac{1}{\omega} x \sin \omega t \partial_{t}
\end{aligned}
$$

*Generators U are excluded
Order to keep a semi-simple grown before. ${ }^{1}$ For a direct
+These generators were (4.4).
Comparison, set $\omega=1$ in

$$
\begin{align*}
& Q_{6}=x \partial_{x} \tag{4.4}\\
& Q_{7}=x \cos (2 \omega t) \partial_{x}+\frac{1}{\omega} \sin (2 \omega t) \partial_{t} \\
& Q_{8}=-x \sin (2 \omega t) \partial_{x}+\frac{1}{\omega} \cos (2 \omega t) \partial_{t}
\end{align*}
$$

The commutation relations of these generators are listed in Table 3, and the metric tensor corresponding to these generators is also evaluated there. Furthermore,

$$
\operatorname{det}\left[g_{a b}\right]=-\frac{(12)^{8}}{3} \neq 0 a, b=1,2, \ldots, 8
$$

Wulfman and Wybourne ${ }^{l}$ found the standard form of these genertors, in the case $\omega=1$, and the comparison of the present results with their work shows that $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{8}$ are proportional to their $E \pm \alpha, E \pm \beta^{\prime}, E \pm \gamma^{\prime} H_{1}$ and H_{2}.

Case 2. Let

$$
\begin{aligned}
& Q_{1}= \pm\left(i / \sqrt{\omega_{0}}\right)\left\{\cos \lambda\left(U_{1}+\omega_{0} U_{4}\right)-\sin \lambda\left(U_{2} \pm \omega_{0} U_{3}\right)\right\} \\
& Q_{3}= \pm\left(i / \sqrt{\omega_{0}}\right)\left\{\sin \lambda\left(U_{1} \pm \omega_{0} U_{4}\right)+\cos \lambda\left(U_{2} \mp \omega_{0} U_{3}\right)\right\} \\
& Q_{5}=-\left\{U_{5}+U_{6}\right\} \\
& \begin{array}{l}
Q_{6}=U_{8} \\
Q_{7}=\sin 2 \lambda\left(U_{5}-U_{6}\right)+\cos 2 \lambda\left(2 U_{7}-U_{8}\right)
\end{array} \\
& \begin{array}{l}
Q_{8}=-\cos 2 \lambda\left(U_{5}-U_{6}\right)+\sin 2 \lambda\left(2 U_{7}-U_{8}\right) \\
\text { given in Eq. }(3.2-5),
\end{array} \\
& \text { *Explicit forms of the } Q_{m} \text { 's are too long to be ore- }
\end{aligned}
$$

be a linear combination of generators* given in Eq. (3, Sented here, but the
Eqs. (3.2-5) and $(4-5)$.
where λ is a function of α and $\omega_{0}{ }^{*}$ *
This set of generators is found to obey the same commutation relations as those Ω_{m} 's in the above Cases 1 and 4, and Table 3 summarizes them.

As a matter of fact, the special form of Eqs. (4-5) is suggested by looking at the limiting behavior, as α approaches zero, of the corresponding U_{m} 's. This will be developed in the next Chapter.

Cases 3, 5. Let \dagger

$$
\begin{align*}
Q_{1}= & \mp\left(\pi \omega_{0}\right)^{-1 / 2}\left\{\cos \mu\left(\pi U_{1} \mp \omega_{0} U_{4}\right)\right. \\
& \left.+\sin \mu\left(U_{2} \pm \pi \omega_{0} U_{3}\right)\right\} \\
Q_{3}= & \mp\left(\pi \omega_{0}\right)^{-1 / 2}\left\{\sin \mu\left(\pi U_{1} \mp \omega_{0} U_{4}\right)\right. \\
4 & \left.-\cos \mu\left(U_{2} \pm \pi \omega_{0} U_{3}\right)\right\} \tag{4-6}\\
Q_{5}= & \pi U_{5}+U_{6} / \pi \\
Q_{6}= & U_{8} \\
Q_{7}= & -\sin 2 \mu\left(\pi U_{5}-U_{6} / \pi\right)+\cos 2 \mu\left(2 U_{7}-U_{8}\right) \\
Q_{8}= & \cos 2 \mu\left(\pi U_{5}-U_{6} / \pi\right)+\sin 2 \mu\left(2 U_{7}-U_{8}\right)
\end{align*}
$$

be a linear combination of generators given in Eqs. (3.3-6),
of λ on α and ω_{0} is given in Chap-
*The dependence of λ on
Case. 2.
ter 5, Case. 2.
+Generator U_{9} is excl in can be obtained using Eqs. $\begin{array}{r}\text { Explicit forms of the } Q_{\mathrm{m}} \\ (3.3-6),(3.5-18)\end{array}$
(3.5-18), with μ being a function of α and $\omega_{0} .^{*}$

As in the above cases, the commutation relations of these generators are listed in Table 3.

As is known ${ }^{1}$, the local: Lie group of Newton's and Lagrange's equation for the oscillator is $\operatorname{SL}(3, R)$ for the case $k=1$, and since the generators Q_{m}, in all problems considered here, have the same set of commutation relations, it is concluded that the local Lie group is still SL ($3, R$) and also that the generators Q_{1}, Q_{3}, Q_{5} form a compact subgroup SO (3).

Table 1. Commutator table for generators Um in Cases 1, 4.*

	U_{1}	U_{2}	U_{3}	U_{4}	U_{5}	U_{6}	U_{7}	U_{8}	U_{9}
U_{1}	0	0	$-\mathrm{U}_{5}$	$-\mathrm{U}_{7}-3 i \mathrm{U}_{8}$	0	$-2 i U_{2}$	$-i U_{1}$	$-\mathrm{U}_{1}$	0
U_{2}	0	0	$-\mathrm{U}_{7}+3 i \mathrm{U}_{8}$	$-U_{6}$	$2 \mathrm{iU}{ }_{1}$	0	iU_{2}	$-\mathrm{U}_{2}$	0
U_{3}	U_{5}	$\mathrm{U}_{7}-3 \mathrm{iU} \mathrm{U}_{8}$	0	0	0	$-2 \mathrm{iU} 4$	$-\mathrm{iU} 3$	U_{3}	0
U_{4}	$\mathrm{U}_{7}+3 i \mathrm{U}_{8}$	U_{6}	0	0	2 iU 3	0	iU4	U_{4}	0
U_{5}	0	$-2 \mathrm{iU}{ }_{1}$	0	$-2 i U_{3}$	0	$-4 \mathrm{iU}_{7}$	$-2 i U_{5}$	0	0
U_{6}	$2 \mathrm{iU} \mathrm{V}_{2}$	0	2 iU 4	0	4 iU 7	0	$2 \mathrm{iU} \mathrm{U}_{6}$	0	0
U_{7}	iU_{1}	$-\mathrm{iU} 2$	iU_{3}	$-\mathrm{iU} 4$	$2 \mathrm{iU} \mathrm{S}_{5}$	$-2 i U_{6}$	0	0	0
U_{8}	U_{1}	U_{2}	$-\mathrm{U}_{3}$	$-\mathrm{U}_{4}$	0	0	0	0	0
U_{9}	0	0	0	0	0	0	0	0	0

*The extra column and row for U_{9} do not count in Case 1.

Table 2. Commutator table for generators Um in Cases 2, 3, 5.*

	U_{1}	U_{2}	U_{3}	U_{4}	U_{5}	U_{6}	U_{7}	U_{8}	U_{9}
U_{1}	0	0	$-\mathrm{U}_{5}$	$-\mathrm{U}_{7}+2 \mathrm{U}_{8}$	0	U_{2}	0	$-\mathrm{U}_{1}$	0
U_{2}	0	0	$-\mathrm{U}_{7}-\mathrm{U}_{8}$	$-\mathrm{U}_{6}$	$-\mathrm{U}_{1}$	0	$-\mathrm{U}_{2}$	$-\mathrm{U}_{2}$	0
U_{3}	U_{5}	$\mathrm{U}_{7}+\mathrm{U}_{8}$	0	0	0	U_{4}	U_{3}	U_{3}	0
U_{4}	$\mathrm{U}_{7}-2 \mathrm{U}_{8}$	U_{6}	0	0	$-\mathrm{U}_{3}$	0	0	U_{4}	0
U_{5}	0	U_{1}	0	U_{3}	0	$2 \mathrm{U}_{7}-\mathrm{U}_{8}$	U_{5}	0	0
U_{6}	$-\mathrm{U}_{2}$	0	$-\mathrm{U}_{4}$	0	$-2 \mathrm{U}_{7}+\mathrm{U}_{8}$	0	$-\mathrm{U}_{6}$	0	0
U_{7}	0	U_{2}	$-\mathrm{U}_{3}$	0	$-\mathrm{U}_{5}$	U_{6}	0	0	0
U_{8}	U_{1}	U_{2}	$-\mathrm{U}_{3}$	$-\mathrm{U}_{4}$	c	0	0	0	0
U_{9}	0	0	0	0	0	0	0	0	0

*The extra column and row for U_{9} count only in Case 5.

Table 3. Commutator table for generators Qm.

$Q_{m} Q_{n}$	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	Q_{7}	Q_{8}
Q_{1}	0	$Q_{7}-3 Q_{6}$	Q_{5}	Q_{8}	$-Q_{3}$	Q_{2}	$-Q_{2}$	$-Q_{4}$
Q_{2}	$-Q_{7}+3 Q_{6}$	0	$-Q_{8}$	$-Q_{5}$	$-Q_{4}$	Q_{1}	$-Q_{1}$	$-Q_{3}$
Q_{3}	$-Q_{5}$	Q_{8}	0	$-Q_{7}-Q_{6}$	Q_{1}	Q_{4}	Q_{4}	$-Q_{2}$
Q_{4}	$-Q_{8}$	Q_{5}	$Q_{7}+3 Q_{6}$	0	Q_{2}	Q_{3}	Q_{3}	$-Q_{1}$
Q_{5}	Q_{3}	Q_{4}	$-Q_{1}$	$-Q_{2}$	0	0	$2 Q_{8}$	$-2 Q_{7}$
Q_{6}	$-Q_{2}$	$-Q_{1}$	$-Q_{4}$	$-Q_{3}$	0	0	0	0
Q_{7}	Q_{2}	Q_{1}	$-Q_{4}$	$-Q_{3}$	$-2 Q_{8}$	0	0	$-2 Q_{5}$
Q_{8}	Q_{4}	Q_{3}	Q_{2}	Q_{1}	$2 Q_{7}$	0	$2 Q_{5}$	0

$$
\left[g_{a b}\right]=4\left[\begin{array}{cccccccc}
0 & 0 & 0 & -3 i & 0 & 0 & 0 & 0 \\
0 & 0 & 3 i & 0 & 0 & 0 & 0 & 0 \\
0 & 3 i & 0 & 0 & 0 & 0 & 0 & 0 \\
-3 i & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Matrix 1. Metric Tensor for Cases 1, 4.*

$$
\left[g_{a b}\right]=2\left[\begin{array}{rrrrrrrr}
0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 \\
0 & 0 & 0 & 0 & -3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

Matrix 2. Metric Tensor for Cases 2, 3, 5.*

$$
\begin{aligned}
& \text { Metric Tensor } \\
& {\left[\begin{array}{cccccccc}
-12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 12 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -12 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 12 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -12 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 12 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 12
\end{array}\right]} \\
& \text { Metric tensor for the generators } Q_{m} .
\end{aligned}
$$

Matrix 3. Metric tensor for 4 in cases 4 and 5.
*The generators U_{9} are excluded in cases 4 and 5

5. LIMITING BEHAVIOR

The purpose of this chapter is to show that the generators found in the problems where k is a function of time reduce to those in which k is constant.

Initially,
Case 1

$$
k=\omega^{2}
$$

Case 2
$k=\omega_{0}^{2}+\alpha t$
Case 3
$k=\omega_{o}^{2} e^{\alpha t}$
Case 5

$$
\dot{\mathrm{k}}=\alpha \mathrm{k}
$$

It is evident that in Cases 2, 3 and 5, as α approaches zero, k approaches a constant.

CASE 2. The generators found in Eq. (3.2-5) involve Airy functions and products of these functions and their derivatives. The argument of these functions is

$$
-u \equiv z=-\alpha^{-2 / 3}\left(\omega_{0}^{2}+\alpha t\right) .
$$

Thus

$$
\dot{u}=-\dot{z}=\alpha^{1 / 3}
$$

As α approaches zero, z goes to $-\infty$ and u tends to $+\infty$; hence the asymptotic representation of Airy's functions hence the asymptotic rept
With large argument is required. targe argument is required.
The functions $A i(-u)$ and $B i(-u)$ are defined as ${ }^{23}$
.

$$
\begin{align*}
& A i(-u)=\frac{1}{3} \sqrt{u}\left\{J_{1 / 3}\left(\frac{2}{3} u^{3 / 2}\right)+J_{-1 / 3}\left(\frac{2}{3} u^{3 / 2}\right)\right\} \tag{5-3}\\
& B i(-u)=\sqrt{u / 3}\left\{J_{-1 / 3}\left(\frac{2}{3} u^{3 / 2}\right)-J_{1 / 3}\left(\frac{2}{3} u^{3 / 2}\right)\right\}
\end{align*}
$$

and since the Bessel functions included have a large argomint and fixed order, the "Hankel" type expansion ${ }^{24}$ is applied; i.e.

$$
\begin{equation*}
J_{v}(u) \sim \sqrt{2 / \pi u} \cos (u-\pi v / 2-\pi / 4)+o\left(|u|^{-3 / 2}\right) \tag{5-4}
\end{equation*}
$$

The argument of the Bessel functions is

$$
\frac{2}{3} u^{3 / 2}=\frac{2 \omega_{o}^{3}}{3 \alpha}\left(1+\alpha t / w_{0}^{2}\right)^{3 / 2}
$$

Using the Binomial expansion, as α approaches zero

$$
\begin{equation*}
\frac{2}{3} u^{3 / 2} \rightarrow \omega_{0} t+\sigma \tag{5-5}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=2 \omega_{0}^{3} / 3 \alpha+o(\alpha) \tag{5-6}
\end{equation*}
$$

Hence, Eqs. (5.4) and (5.5) give

$$
\text { Eqs. (5.4) and } J_{1 / 3}\left(\frac{2}{3} u^{3 / 2}\right) \sim \sqrt{3 / \pi u^{3 / 2} \cos \left(\omega_{0} t+\lambda_{1}\right)}
$$

and

$$
J_{-1 / 3}\left(\frac{2}{3} u^{3 / 2}\right) \sim \sqrt{3 / \pi u^{3 / 2}} \cos \left(\omega_{0} t+\lambda_{2}\right)
$$

With

$$
\lambda_{1}=\sigma-5 \pi / 12
$$

Thus

$$
J_{-1 / 3}-J_{1 / 3}
$$

where

$$
\begin{equation*}
\lambda=\sigma-\pi / 4=2 \omega_{o}^{3} / 3 \alpha-\pi / 4+o(\alpha) \tag{5-8}
\end{equation*}
$$

Two of the basic factors in the generators, in terms of u, are

$$
\begin{aligned}
& \sqrt{\pi /-\dot{u}} \mathrm{Ai}(-\mathrm{u})=\frac{i}{3} \sqrt{\pi u / \dot{u}}\left(J_{1 / 3}+J_{-1 / 3}\right) \\
& \sqrt{\pi /-\dot{u}} \mathrm{Bi}(-\mathrm{u})=i \sqrt{\pi \bar{u} / 3 \dot{\mathrm{u}}}\left(J_{-1 / 3}-J_{1 / 3}\right)
\end{aligned}
$$

and using Eqs. (5-7), their limiting forms as α goes to zero are

$$
\begin{align*}
& \sqrt{\pi / z} \mathrm{Ai}(z)=\left(i / \sqrt{\omega_{0}}\right) \cos \left(\omega_{0} t+\lambda\right) \\
& \sqrt{\pi / \dot{z}} \mathrm{Bi}(z)=-\left(i / \sqrt{\omega_{0}}\right) \sin \left(\omega_{0} t+\lambda\right) \tag{5-9}
\end{align*}
$$

Where use has been made of the fact that

$$
\lim _{\alpha \rightarrow 0}(\dot{u} \sqrt{u})=\lim _{\alpha \rightarrow 0} \sqrt{\omega_{0}^{2}+\alpha t}=\omega_{0} .
$$

Similarly, it is found that

One may use the same procedure to obtain the remaining expressions contained in the generators U_{m}. Let

$$
\tilde{\mathrm{U}}_{\mathrm{m}}=\lim _{\alpha \rightarrow 0} \mathrm{U}_{\mathrm{m}}
$$

represent the limiting behavior of the generators U_{m}. Then, by using the above expressions, one can obtain

$$
\begin{align*}
& \tilde{U}_{1}=-\left(i \sqrt{\omega_{0}}\right)\left\{x^{2} \sin \left(\omega_{0} t+\lambda\right) \partial_{x}-\frac{1}{\omega_{0}} x \cos \left(\omega_{0} t+\lambda\right) \partial_{t}\right\} \\
& \tilde{U}_{2}=-\left(i \sqrt{\omega_{0}}\right)\left\{x^{2} \cos \left(\omega_{0} t+\lambda\right) \partial_{x}+\frac{1}{\omega_{0}} x \sin \left(\omega_{0} t+\lambda\right) \partial_{t}\right\} \\
& \tilde{U}_{3}=\left(i / \sqrt{\omega_{0}}\right)\left\{\cos \left(\omega_{0} t+\lambda\right) \partial_{x}\right\} \\
& \tilde{U}_{4}=-\left(i /{\sqrt{\omega_{0}}}_{0}\right)\left\{\sin \left(\omega_{0} t+\lambda\right) \partial_{x}\right\} \tag{5-11}\\
& \tilde{U}_{5}=-\left\{-\frac{1}{2} x \sin \left(2 \omega_{0} t+2 \lambda\right) \partial_{x}+\frac{1}{\omega_{0}} \cos ^{2}\left(\omega_{0} t+\lambda\right) \partial_{t}\right\} \\
& \tilde{U}_{6}=-\left\{\frac{1}{2} x \sin \left(2 \omega_{0} t+2 \lambda\right) \partial_{x}+\frac{1}{\omega_{0}} \sin { }^{2}\left(\omega_{0} t+\lambda\right) \partial_{t}\right\} \\
& \tilde{U}_{7}=\frac{1}{2}\left\{x \partial_{x}+x \cos \left(2 \omega_{0} t+2 \lambda\right) \partial_{x}+\frac{1}{\omega_{0}} \sin \left(2 \omega_{0} t+2 \lambda\right) \partial_{t}\right\} \\
& \tilde{U}_{8}=x \partial_{x}
\end{align*}
$$

from which the following linear combinations

$$
\begin{align*}
& \text { Mich the following linear } \\
& \tilde{Q}_{1}= \pm\left(i /{\sqrt{\omega_{0}}}_{0}\right)\left\{\cos \lambda\left(\tilde{U}_{1}+\omega_{0} \tilde{U}_{4}\right)-\sin \lambda\left(\tilde{U}_{2}+\omega_{0} \tilde{U}_{3}\right)\right\} \tag{5-12}\\
& \tilde{Q}_{3}= \pm\left(i /{\sqrt{\omega_{0}}}_{0}\right)\left\{\sin \lambda\left(\tilde{U}_{1}+\omega_{0} \tilde{U}_{4}\right)+\cos \lambda\left(\tilde{U}_{2}+\omega_{0} \tilde{U}_{3}\right)\right\} \\
& 4 \\
& \tilde{Q}_{5}=-\left\{\tilde{U}_{5}+\tilde{U}_{6}\right\} \\
& \tilde{Q}_{6}=\tilde{U}_{8} \\
& \tilde{Q}_{7}=\sin 2^{\lambda}\left(\tilde{U}_{5}-\tilde{U}_{6}\right)+\cos 2^{\lambda}\left(2 \tilde{U}_{7}-\tilde{U}_{8}\right) \\
& \tilde{Q}_{8}=-\cos 2^{\lambda\left(\tilde{U}_{5}-\tilde{U}_{6}\right)+\sin 2^{\lambda}\left(2 \tilde{U}_{7}-\tilde{U}_{8}\right)}
\end{align*}
$$

Produce identical generators to those in Eq. (4-4).

CASE 3. The generators listed in Eq. (3.3-6) invalve Bessel and Hanker functions (of order 0) and products of these functions and their derivatives with the argument given in Eq. (3.3-4).

As α goes to zero, z approaches $+\infty$, so that the "Hankel" type expansion is used to find the asymptotic behavior of the generators; i.e., Eq. (5-4) and*

$$
Y_{n}(z) \sim \sqrt{2 \pi / z} \sin (z-n \pi / 2-\pi / 4)+0\left(|z|^{-3 / 2}\right)
$$

Expanding Eq. (3.3-4) in Taylor's series and taking the limit as a goes to zero,

$$
\begin{equation*}
z \rightarrow \omega_{0} t+\bar{\sigma} \tag{5-14}
\end{equation*}
$$

where

$$
\bar{\sigma}=2 \omega_{0} / \alpha+o(\alpha)
$$

Using Eqs. $(5-4),(5-13),(5-14)$, it is found that

$$
\begin{align*}
& \lim _{\alpha \rightarrow 0} \frac{J_{0}(z)}{\sqrt{\alpha}}=\left(\pi \omega_{0}\right)^{-1 / 2} \cos \left(\omega_{0} t+\mu\right) \tag{5-15}\\
& \lim _{\alpha \rightarrow 0} \frac{Y_{0}(z)}{\sqrt{\alpha}}=\left(\pi / \omega_{0}\right)^{1 / 2} \sin \left(\omega_{0} t+\mu\right) \tag{5-16}
\end{align*}
$$

Where

$$
\begin{aligned}
& \alpha \rightarrow 0 \quad \sqrt{\alpha} \\
& \mu=\bar{\sigma}-\pi / 4=2 \omega_{o} / \alpha-\pi / 4+o(\alpha) .
\end{aligned}
$$

*There are ambiguities about the name and symbol for $\begin{aligned} & \text { for } \\ & \text { tuition given in Watson }\end{aligned}$ *There are ambollow
Hanker functions.
No. 199.

Furthermore,

$$
\begin{align*}
& \lim _{\alpha \rightarrow 0} \frac{\dot{J}_{0}(z)}{\sqrt{\alpha}}=-\left(\omega_{0} / \pi\right)^{1 / 2} \sin \left(\omega_{0} t+\mu\right) \tag{5-17}\\
& \lim _{\alpha \rightarrow 0} \frac{\dot{Y}_{0}(z)}{\sqrt{\alpha}}=\left(\pi \omega_{0}\right)^{1 / 2} \cos \left(\omega_{0} t+\mu\right)
\end{align*}
$$

and so on. The use of Eqs. (5-15), (5-17) and a similar procedure provide the remaining expressions such that the limiting behavior of the generators is found to be

$$
\tilde{\mathrm{U}}_{\mathrm{m}}=\lim _{\alpha \rightarrow 0} \mathrm{U}_{\mathrm{m}} \quad \mathrm{~m}=1,2, \ldots, 8,
$$

where

$$
\begin{aligned}
& \tilde{U}_{1}=\left(\omega_{0} / \pi\right)^{1 / 2}\left\{-x^{2} \sin \left(\omega_{0} t+\mu\right) \partial_{x}+\frac{1}{\omega_{0}} \times \cos \left(\omega_{0} t+\mu\right) \partial_{t}\right\} \\
& \tilde{\mathrm{U}}_{2}=\left(\pi \omega_{0}\right)^{1 / 2}\left\{\mathrm{x}^{2} \cos \left(\omega_{0} t+\mu\right) \partial_{x}+\frac{1}{\omega_{0}} x \sin \left(\omega_{0} t+\mu\right) \partial_{t}\right\} \\
& \tilde{\mathrm{u}}_{3}=\left(\pi \omega_{0}\right)^{-1 / 2}\left\{\cos \left(\omega_{0} t+\mu\right)_{x}\right\} \\
& \tilde{\mathrm{U}}_{4}=\left(\pi / \omega_{0}\right)^{1 / 2}\left\{\sin \left(\omega_{0} t+\mu\right)^{\partial} X_{x}\right. \\
& \tilde{U}_{5}=(1 / \pi)\left\{-\frac{1}{2} \times \sin \left(2 \omega_{0} t+2 \mu\right) \partial_{x}+\frac{1}{\omega_{0}} \cos ^{2}\left(\omega_{0} t+\mu\right) \partial_{t}\right\} \\
& \begin{array}{l}
\tilde{U}_{6}=\pi\left\{\frac{1}{2} x \sin \left(2 \omega_{0} t+2 \mu\right) \partial_{x}+\frac{1}{\omega_{0}} \sin ^{2}\left(\omega_{0} t+\mu\right) \partial_{t}\right\} \\
\tilde{U}^{\prime}
\end{array} \\
& \tilde{U}_{7}=\frac{1}{2}\left\{x_{x}^{\partial}+x \cos \left(2 \omega_{0} t+2^{\mu}\right)_{x}+\frac{1}{\omega_{0}} \sin \left(2 \omega_{0} t+2^{\mu}\right)_{t}\right\}^{\prime} \\
& \tilde{\mathrm{U}}_{8}=\mathrm{x}^{\partial}{ }_{\mathrm{x}} .
\end{aligned}
$$

The following linear combinations

$$
\begin{align*}
\tilde{\mathrm{Q}}_{1}= & \mp\left(\pi \omega_{0}\right)^{-1 / 2}\left\{\cos \mu\left(\pi \tilde{\mathrm{I}}_{1} \mp \omega_{0} \tilde{\mathrm{U}}_{4}\right)\right. \\
2 & \left.+\sin \mu\left(\tilde{\mathrm{U}}_{2} \pm \pi \omega_{0} \tilde{\mathrm{U}}_{3}\right)\right\} \\
\tilde{\mathrm{Q}}_{3}= & \mp\left(\pi \omega_{0}\right)^{-1 / 2}\left\{\sin \mu\left(\pi \tilde{\mathrm{U}}_{1} \mp \omega_{0} \tilde{\mathrm{U}}_{4}\right)\right. \\
4 & \left.-\cos \mu\left(\tilde{\mathrm{U}}_{2} \pm \pi \omega_{0} \tilde{\mathrm{U}}_{3}\right)\right\} \\
\tilde{\mathrm{Q}}_{5}= & \pi \tilde{\mathrm{U}}_{5}+\frac{1}{\pi} \tilde{\mathrm{U}}_{6} \tag{5-19}\\
\tilde{\mathrm{Q}}_{6}= & \tilde{\mathrm{U}}_{8} \\
\tilde{\mathrm{Q}}_{7}= & -\sin 2 \mu\left(\pi \tilde{\mathrm{U}}_{5}-\frac{1}{\pi} \tilde{\mathrm{U}}_{6}\right)+\cos 2 \mu\left(2 \tilde{\mathrm{U}}_{7}-\tilde{\mathrm{U}}_{8}\right) \\
\tilde{\mathrm{Q}}_{8}= & \cos 2 \mu\left(\pi \tilde{\mathrm{U}}_{5}-\frac{1}{\pi} \tilde{\mathrm{U}}_{6}\right)+\sin 2 \mu\left(2 \tilde{\mathrm{U}}_{7}-\tilde{\mathrm{U}}_{8}\right)
\end{align*}
$$

Give the same generators as those found in case 1 .

CASE 5. A different approach is followed here and the results of the above case 3 will be used. The use of Eq. (I-22)* in the generators found in Eq. (3.5-18) enables one to write

$$
\begin{align*}
& \text { write } \\
& \mathrm{U}_{1}=\frac{1}{\sqrt{\alpha}}\left\{\sqrt{k} x^{2} J_{0}^{\prime} \partial_{x}+x J_{0} \partial_{t}+\alpha x k J_{0} \partial_{k}\right\} \tag{5-20}\\
& U_{2}=\frac{1}{\sqrt{\alpha}}\left\{\sqrt{k} x^{2} Y_{0}^{\prime} \partial_{X}+x Y_{0} \partial_{t}+\alpha x k Y_{0} \partial_{k}\right\} \\
& U_{3}=\frac{1}{\sqrt{\alpha}} J_{0} \partial_{X}
\end{align*}
$$

*See Appendix.

$$
\begin{aligned}
& \mathrm{U}_{4}=\frac{1}{\sqrt{\alpha}} \mathrm{Y}_{\mathrm{O}}{ }^{\partial}{ }_{\mathrm{X}} \\
& U_{5}=\frac{1}{\alpha}\left\{\sqrt{k} \times J_{0} J_{0}^{\prime} \partial_{x}+J_{o}^{2} \partial_{t}+\alpha k J_{o}^{2} \partial_{k}\right\} \\
& U_{6}=\frac{1}{\alpha}\left\{\sqrt{k} \times Y_{o} Y_{o}^{\prime} \partial_{X}+Y_{o}^{2} \partial_{t}+\alpha k Y_{o}^{2} \partial_{k}^{\prime}\right\} \\
& U_{7}=\frac{1}{\alpha}\left\{\sqrt{k} \times J_{0} Y_{0}^{\prime} \partial_{x}+J_{0} Y_{0} \partial_{t}+\alpha k J_{0} Y_{0} \partial_{k}\right\} . \\
& \mathrm{U}_{8}=\mathrm{x} \partial_{\mathrm{x}}
\end{aligned}
$$

and the Bessel and Hanker functions all have the argument

$$
\begin{equation*}
z=\frac{2}{\alpha} \sqrt{\mathrm{k}} \tag{5-2I}
\end{equation*}
$$

with the restriction

$$
\begin{equation*}
\dot{\mathrm{k}}=\alpha \mathrm{k} \tag{5-22}
\end{equation*}
$$

As α tends to zero, z goes to $+\infty, \dot{k}$ approaches zero, and $J_{0} / \sqrt{\alpha}, Y_{0} / \sqrt{\alpha}, J_{0}^{\prime} / \sqrt{\alpha}, Y_{O}^{\prime} / \sqrt{\alpha}$ and their products have a finite behavior, which imply that the coefficients of ∂_{x} and ∂_{t} Converge. However, the coefficients of ∂_{k} approach zero faster than the others because of their α factor. This fact reduces the generators to those in case 3 if Eq. (5-22) is Used.for it implies that

$$
k=\omega_{0}^{2} e^{\alpha t}
$$

ω_{0}^{2} being constant.

CONCLUSION

The results of a study carried out as an attempt to obtain some general characteristics of the invariance groups for differential equations describing time-dependent harmonic Oscillators, show that oscillators with quite different time dependencies admit identical or very similar local Lie groups of point transformations. In Cases 2 and 3 the systerm has the same $S L(3, R)$ Lie-algebra as the simple harmonic Oscillator or Case 1. In Cases 4 and 5 , the $S L(3, R)$ is a Sub-algebra, there being an additional generator which commutes with the eight $\operatorname{SL}(3, R)$ generators.

The local Lie groups, and their first and second
extensions obtained for cases 2 through 5 in this work, do not seem to have appeared before. The asymptotic connections established between these groups are also new. This of the relationship between invariance under point $t_{r_{n}}{ }_{\text {formations }}$ and adiabatic invariance. Attaining this goal might give a new approach to Enrenfest's adiabatic inrance principle. In addition to generalizing the work in this direction, the results of this the
of curves should illuminate the physical significance of the results obtained here.

This work also suggests that for a wide variety of cases in where k is allowed to vary the equation,

$$
\ddot{x}+k x=0
$$

admits the local Lie group of point transformations $\operatorname{SL}(3, R)$. It would evidently be of great interest to establish just how generalizable this result is.

REFERENCES

1. R. L. Anderson and S. M. Davison, J. Math. Anal. and Appli., V. 48, 301 (1974). See also, C. E. Wulfman and B. G. WYbourne, "The Lie Group of Newton's and Lagrange's Equations for the Harmonic Oscillator." Journal of Physics A, London (in Press).
2. Max Jammer. The Conceptual Development of Quantum Mechanics. McGraw-Hill Book Company. New York (1966) Chapter 3.
3. Phrenfest, "Adiabatic Invariants and the Theory of Quanta." Phil. Mag V. 33, 500-13 (1917).
4.

Jammer, Ibid., p.
(a) J. M. Burgers, "Adiabatic Invarich $514-20(1917)$.
(b) W. B. Morton, "Simple Examples of Adiaba (1929).
variance." Phil. Mag., - Invariance in simple
(c) Leonard Parker, "Adiabatic Invariance Journal of physics, V. 39, Harmonic Motion."
24-7 (1971).
(d) T. Levi-Civita, "Survey of the Theory of the

Adiabatic Invariants," (1934).
6.

Jammer, hoc. cit., p. 106.
7. Jammer, loc. cit., 106. Clarenton H. Alfven, $\frac{\text { Cosmical Electrodynamics, }}{}$ Press, oxford (1950). R. M. Kulsrud, "Adiabatic Invariant of No. 206, 205-7 (1957). Oscillator." phys. Rev., to all orders," Ann. 20. A. Lenard, "Adiabatic Invariance.
11. (a) C. S. Gardner, "Adiabatic Invariants of Periodic Classical Systems," V. 115, 791-4 (1959).
(b) L. Spitzer, Phys. Fluids, V. 1, 253 (1958).
(c) P. O. Vandervoort, "The Nonconstancy of the Adiabatic Invariants," Ann. Phys. (USA) V. 12, 436-43 (1961).
(d) J. E. Littlewood, "Lorentz Pendulum Problem," Ann. Phys. (N.Y.) V. 6, 261-76 (1959); "Adiabatic Invariance II," Ann. Phys. (N.Y.) V. 26, 131-56 (1964);
"Adiabatic Invariance III," Ann. Phys. (N.Y.) V. 29, l-12 (1964); and "Adiabatic Invariance IV," Ann. Phys. (N.Y.) V. 29, 13-18 (1964).
12. "Asymptotic Theory of Hamilton and other M. Kruskal, "Asymptotic Theory orly Periodic." J. Math. Systems with all Solutions (1962).
Phys. V. 3, No. 4, 806-28 (1962).
13. "Class of Exact Invariants for ClosH. R. Lewis, Jr.' Time-Dependent Harmonic oscillators. J. Math. Phys. V. 9, No. Il, 1976 quantum Systems with H. R. Lewis, Jr., "Classicallator-Type Hamiltonians. Time-Dependent Harmonic-oscill $13,510-12$ (1967); also Phys. Rev. Letters, V. $\frac{18}{}$, Netters, V. 18, 636 (1967). an erratum: Phys. Rev. Disenfeld, "An Exact H. R. Lewis, Jr., and Time-Dependent Harmdent ElectroQuantum Theory of the idle in a Time-Dep, No. 8, 1458and of a Charged Particle in phys., V. 10, No. 8, magnetic Field."

Symon, "The Adiabatic Invariant of the Linear and 73 (1969).
K. R. Symon, "The Adiabatic Invar Math. Phys. V. 11, No. 4 , Nonlinear Oscillator.
Lie, Sophus. Vorlesunchen Uber Continuerliche Group (1971). First New York. Chelsea (1893). see theory of one-parameter (1911), published Leipzig, to the Lie Theory publishers, The Introduction to the Co. Chapters 1, 2, 4. E. L. Ince, Ordinary Differential Equations. Publications Inc.,
Abraham Cohen, Supra. Racah Giulio, Erg. der Exact Naturwiss, Classical Group for phys See also: Wybourne, $\frac{C l}{\text { Cow }}$ York (1974)' John Wiley \& Sons, New
20. W. Magnus, F. Oberhettinger, and R. P. Soni. Formulas and Theorems for the Special Functions of Mathematical Physics. Springer-Verlag, New York, Inc., 3rd enlarged ed. (1966), Chapter 3.
21.
G. N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge University Press. First paper back Ed. (1966), Chapter 3.
22.
G. W. Bluman and J. D. Cole. Similarity Methods for Differential Equations. SpringIer Verlag, New York, (1974).
23. I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products. Translated from the Russian by Script Technica, Inc. Translation edited by Alan Jeffrey. Academic Press. New York, (1965). See also: Oberhettinger and Soni, loci. cit., Chapter 3.
24.
R. Courant and D. Hilbert. Methods of Mathematical Physics. Interscience Publishers. New York, Vol. I, (1953), Chapter 7. See also: Watson, loc. cit., Chapter 7 .
25. Watson, loc. cit., Chapters 3 and 7. P. M. Morse and H. Feshbach. Company, Inc., New York Physics. McGraw Hill Book Companso: Courant and (1953), Part I, Chapter 6. See (1962), Chapter 3. Hilbert, loc. cit., Vol. II,
27.

Watson, loc. cit., Chapter 3.
28.

Ibid., Chapter 5, No. 5.4.

APPENDIX

AN EXAMPLE OF SOLVING THE DETERMINING EQUATIONS

Case 5. k a dependent variable
Reordering of Eqs. (3.5-15) under the condition of Eq. (3.5-16) gives

$$
\begin{aligned}
& \zeta_{\mathbf{x}}-\alpha k \eta_{\mathbf{x}}=0 \\
& \zeta_{t}-\alpha \zeta+\alpha k\left(\zeta_{k}-n_{t}\right)-\alpha k^{2} n_{k}=0 \\
& \begin{array}{l}
\eta_{x x}=0 \\
\xi_{x x}-2 n_{x t}-2 \alpha k n_{x k}=0
\end{array} \\
& \left.2 \xi_{x t}-n_{t t}+2 \alpha k\left(\xi_{x k}-n_{k t}\right)-\alpha^{2 k\left(n_{k}\right.}+k n_{k k}\right) \\
& +3 k \times \eta_{x}=0 \\
& \xi_{t t^{+}} k\left(\xi+2 \alpha \xi_{t k}\right)+\alpha^{2}{ }_{k}\left(\xi_{k}+k \xi_{k k}\right) \\
& +x\left\{\zeta+k\left(2 n_{t}-\xi_{x}\right)+2 \alpha k^{2} n_{k}\right\}=0 .
\end{aligned}
$$

Integration of the above equations gives

$$
\begin{aligned}
& \zeta=\alpha k x \gamma+\alpha k^{\delta}+\beta \\
& \eta=x \gamma+\delta \\
& \xi=x^{2}\left(\gamma_{t}+\alpha k \gamma_{k}\right)+x^{\phi}+\theta
\end{aligned}
$$

Where $\beta, \gamma, \delta, \phi$ and θ are functions of (t, k) obeying the conditions

$$
\begin{gathered}
\beta_{t}+\alpha k \beta_{k}-\alpha \beta=0 \\
\gamma_{t t}+2 \alpha k \gamma_{t k}+\alpha^{2} k^{2} \gamma_{k k}+\alpha^{2} k \gamma_{k}+k \gamma=0 \\
(t, k) \quad \theta_{t t}+2 \alpha k \theta_{t k}+\alpha^{2} k^{2} \theta_{k k}+\alpha^{2} k \theta_{k}+k \theta=0 \\
\delta_{t t}+2 \alpha k \delta_{t k}+\alpha^{2} k^{2} \delta_{k k}+\alpha^{2} k \delta_{k}-2\left(\phi_{t}+\alpha k \phi_{k}\right)=0 \\
\beta+\phi_{t t}+2 \alpha k \phi_{t k}+\alpha^{2} k^{2} \phi_{k k}+\alpha^{2} k \phi_{k} \\
+2 k \delta_{t}+2 \alpha k^{2} \delta_{k}+\alpha k \delta=0 .
\end{gathered}
$$

The transformations

$$
\begin{aligned}
T & =\alpha t \\
K & =\operatorname{lnk}
\end{aligned}
$$

reduce Eggs. (I-2) to the form

$$
\begin{aligned}
& \left(e^{-K_{B}}\right)_{T}+\left(e^{-K_{B}}\right)_{K}=0 \\
& \gamma_{T T}+2 \gamma_{K T}+\gamma_{K K}+\frac{1}{\alpha^{2}} e^{K_{\gamma}}=0
\end{aligned}
$$

$(P, R) . \quad \theta_{T T}+2 \theta_{K T}+\theta_{K K}+\frac{1}{\alpha 2} e^{K_{\theta}}=0$

$$
\delta_{T T}+2 \delta_{K T}+\delta_{K K}-\frac{2}{\alpha}\left(\phi_{T}+\phi_{K}\right)=0
$$

$$
\begin{align*}
& \delta_{T T}+2 \delta_{K T}+\delta_{K K}-\bar{\alpha} \tag{I-5}\\
& \frac{1}{\alpha^{2}} \beta+\phi_{T T}+2 \phi_{K T}+\phi_{K K}+\frac{1}{\alpha} e^{K}\left(2 \delta_{T}+2 \delta_{K}+\delta\right)=0 .
\end{align*}
$$

$t_{\text {transformations }} 26$

$$
\begin{aligned}
& y=\frac{1}{2}(T-K) \\
& r=\frac{1}{2}(T+K)
\end{aligned}
$$

on Eq. (I-4) give

$$
\begin{align*}
& \left(e^{Y-r} \beta\right)_{r}=0 \\
& (r, y) \quad \gamma_{r r}+\frac{1}{\alpha^{2}} e^{r-y_{\gamma}}=0 \tag{I-6}\\
& { }_{r r}+\frac{1}{\alpha^{2}} e^{r-y_{\theta}}=0 \\
& \delta_{r r}-\frac{2}{\alpha} \phi_{r}=0 \\
& \frac{1}{\alpha^{2}} \beta+\phi_{r r}+\frac{1}{\alpha} e^{r-y}\left(2 \delta_{r}+\delta\right)=0
\end{align*}
$$

Solution of the first equation of the above set yields

$$
\begin{equation*}
\beta(x, y)=c_{0} e^{r-y} \tag{I-7}
\end{equation*}
$$

Where C_{o} is function of the variable y.
The remaining equations in (I-6) are transformed to

$$
\begin{align*}
& \quad \gamma_{\rho \rho}+e^{2 \rho_{\gamma}}=0 \tag{I-8}\\
& (\rho, y) \quad \theta_{\rho \rho}+e^{2 \rho_{\theta}}=0 \\
& \quad \delta_{\rho \rho}-\frac{4}{\alpha} \phi_{\rho}=0 \\
& \tag{IT}\\
& \quad \frac{1}{4} \alpha^{2} c_{o} e^{2 \rho}+\frac{1}{4} \phi_{\rho \rho}+\frac{1}{4} \alpha e^{2 \rho}\left(\delta_{\rho}+\delta\right)=0,
\end{align*}
$$

$$
\rho=\frac{1}{2}(r-y)-\ln (\alpha / 2)
$$

$\rho=$
and Eq. (I-7) has been used in the last equation of (I-8).
$T h e$ Solution to γ and θ is written as

$$
\begin{align*}
& \gamma(\rho, y)=c_{1} J_{0}+c_{2} Y_{0} \tag{I-10}\\
& \theta(\rho, y)=c_{3} J_{0}+c_{4} y_{0} .
\end{align*}
$$

where $c_{1}, C_{2}, C_{3}, C_{4}$ are functions of y and J_{0}, y_{0} are Bessel and Hankel functions ${ }^{27}$ with the argument e^{ρ}.
Combination of the last two equations in (I-8) gives

$$
\begin{equation*}
\Lambda_{\rho \rho \rho}+4 I \Lambda_{\rho}+2 I ' \Lambda=0 \tag{I-12}
\end{equation*}
$$

with

$$
\begin{equation*}
\Lambda(\rho, y)=\delta(\rho, y)+\frac{1}{\alpha} c_{o} \tag{I-13}
\end{equation*}
$$

and

$$
\begin{equation*}
I(\rho)=e^{2 \rho} . \tag{I-14}
\end{equation*}
$$

Thus

$$
I^{\prime}=2 e^{2 \rho} .
$$

The solution to Eq. (I-11) reads ${ }^{28}$

$$
\Lambda=c_{6} J_{0}^{2}+c_{7} J_{0} Y_{0}+C_{8} Y_{0}^{2}
$$

where c_{6}, c_{7}, c_{8} are functions of y. Using (I-15) in (I-12) gives

$$
\delta(\rho, Y)=c_{6} J_{0}^{2}+c_{7} J_{0} Y_{0}+c_{8} Y_{0}-\frac{1}{\alpha} c_{0} .
$$

Integration of the third equation of (I-8) leads to

$$
\begin{aligned}
& \text { Lion of the third } \\
& \phi(\rho, Y)=\frac{a}{2} e^{\rho}\left(C_{6} J_{0}^{J} J_{0}^{\prime}+c_{7} \mathcal{J}_{0} Y_{0}^{\prime}+c_{8} Y_{0} Y_{0}^{\prime}\right)+C_{5},
\end{aligned}
$$

Going back to the original variables (t, k), the solutions to Eq. (I-2) read

$$
\begin{align*}
& B=C_{0} k \\
& \gamma=C_{1} J_{0}+C_{2} Y_{0} \tag{I-18}\\
& \theta=C_{3} J_{0}+C_{4} Y_{0} \\
& \delta=C_{6} J_{0}^{2}+C_{7} J_{0} Y_{0}+C_{8} Y_{0}^{2}-\frac{1}{\alpha} C_{0} \\
& \phi=\sqrt{k}\left\{C_{6} J_{0} J_{0}^{\prime}+C_{7} J_{0} Y_{0}^{\prime}+C_{8} Y_{0} Y_{0}^{\prime}\right\}+C_{5}^{\prime}
\end{align*}
$$

Where the argument of J_{O}, Y_{O} and their derivatives is

$$
z=\frac{2}{\alpha} \sqrt{k}
$$

and

$$
y=\frac{l}{2}(a t-\ln k)
$$

for those C_{n} 's.
Then, Eq. (I-I) becomes
$\zeta=\Omega_{1} \alpha k x J+\Omega_{2} \alpha k X Y_{0}+\Omega_{5} \alpha^{\alpha k J} J_{0}^{2}+\Omega_{6}{ }^{\alpha k Y_{o}^{2}}$
$\zeta=\Omega_{1} \alpha k \times J_{0}+\Omega_{2} \alpha k \times Y_{0}+\Omega_{5} \alpha J_{0}+\Omega_{6} \alpha Y_{0}$
$\eta=\Omega_{1} X J_{0}+\Omega_{2} X Y_{0}+\Omega_{5} J_{0}^{2}+\Omega_{6} Y_{0}^{2}+\Omega_{7} J_{0} Y_{0}+\Omega_{9}$
$\xi=\Omega_{1} \alpha{ }^{2}{ }_{k}{ }^{*} J_{0}+\Omega_{2} \alpha \mathrm{x}^{2}{ }^{*} \dot{Y}_{0}+\Omega_{5} \alpha x k J_{0}{ }^{J_{O}}+\Omega_{6} \alpha x k Y_{0} Y_{0}$
$+\Omega_{7} \alpha_{\mathrm{Xk} J_{O} Y_{O}}^{Y_{0}}+\Omega_{3} J_{O}+\Omega_{4} Y_{0}+\Omega_{8} X_{1}$
where $\stackrel{\star}{J}_{0}, \stackrel{*}{Y}_{o}$ are the derivatives with respect to k; ie.

$$
\begin{equation*}
\stackrel{*}{J}_{0}^{*}=\frac{1}{\alpha \sqrt{k}} J_{0}^{\prime} \tag{I-22}
\end{equation*}
$$

and the Ω_{n} 's have been relabeled to agree with Eq. (3.5-17). From Eq. (I-21), the generators U_{n} in Eq. (3.5-18) are impmediately obtained. The extra factor α, which appears in Some of them, is chosen for a proper convergence of generators When α approaches zero (see Chapter 5).

Group of poin' José Ricardo
dent harmonic oscillators. iii, 672.28 cm . 1976. Thesis (M.S.) - University of the Pacific, 1976. Bibliography: 2.59-61.
Thesis Bibliography: ℓ.-...... Another copy.
1.Mathematical physics copy. equations. 4.Stockton, Calif grours. 3.Differential - Dissertations. I.Title.

