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INTRODUCTION 

In general, a physical system has invariant quantities 

which are very often related to its symmetry and to the in­

variance of the equation that describe it. A detailed study 

of the invariance property of the differential equation will 

be helpful in understanding this relation. 

The work is concerned with a preliminary investiga-

tion of the Lie-group which leaves invariant the Newtonian 

and Lagrangian equation of motion for a one-dimensional 

harmonic oscillator. A brief review of Ehrenfest's adiabatic 

principle and the ].ater treatments on exact and adiabatic 

invariants will be presented. 
The program starts with a historical survey of adiabatic 

· chapter 1 and a review of the theory 
and exact invariants ~n 

sformations in 
continuous group tran 

3 
the differential 

In Chapter ' 

of 

Chapter 2. 

equation of the har-

applying Lie's theory, 
is considered and, by 

monic oscillator tions that leave it invariant are 

infinitesimal transforma 

sought. 
b
etter insight into the general charac­

To obtain a equations, the following particu-

teristics of oscillator type 

d
. d in detail: 

lar cases will be stu ~e 

1 
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For the equation 

+ k(t) X= o, 

cons~dered where x is . as a function f o t, t be' ~ng the inde-

pendent variable: 

case 1 k (t) = 2 
w w = constant 

2 k (t) 
2 = wo + at 

case 
wo and CL are const 

case 3 
= 002eat k (t) 0 

case 4. For the equation 

as ~n ependent variables 
where k and t are considered · d 

and x 

as a function of k and t. 

case 5. For the system of equations 

ak == o 

t being the independent variable, x and k are functions 

The generators, labeled Cm• and their first and 

dk 
Cff 

second extensions will be calculated in each case. 

It must be mentioned that in case 1, the set of 

of t. 

gen-

ants 

erators had alreadY been obtained .by R. L. Anderson (1974) 

and their classification was developed by Wulfman and Wybournel 



I I 
~ I 3 
I with the result that the global Lie-group for the harmoni~ 

I oscillator is SL(3,R). I Once the generators are found, the program continues 

! in Chapter 4 by calculating the sets of commutators and the 

metric tensors. It will be found that the Lie algebra 

closes under the commutation operation in each case. The 

local Lie-group is semi-simple and still SL(3,R) in cases 

\:.= .. i 

2 and 3. Furthermore, in both cases 4 and 5, the sub-set 

of generators obtained by excluding one generator obey the 

same Lie algebra as in the remaining cases. 

Finally, Chapter 5 deals with the asymptotic 

behavior of the generators (as a approaches zero) for the 

Cases 
2

, 
3 

and 
5

, and it also will be shown that they con-

case 1. 
verge to the generators of the 

A detailed calculation 

Case 5, given in the Appendix, 

for the generators in the 

closes this work. 



NOTATIONS AND CONVENTIONS 

In this work, a number of symbols are used to repre­

sent physical variables. Physical time is represented by 

the letter t and position by ~· Unless otherwise would be 

specifically stated, position's time-derivative is abbrevi-

ated by using an over-dot, i.e. 

dx 
X - dt 

and the same treatment is followed for all variables which 

depend only on t; for instance, see T1 in Eq. (3.9); 

Ai in Eq. (
3

•
2

_
2

); y
0 

in Eq. (3.3-3), and so on. Similarly, 

;s abbreviated by an over-star, i.e. 
the k-derivative ~ 

z == z(k) 

derivative of a function with respect 
and a prime denotes the 

to its argument, 

J' (z) : 
0 

e.g.: 

9..-- (J (z)} 
dZ 0 

It is then evident that 
I • 

Ai(z) == Ai(z)Z 

* J (Z) 
0 

* ::J'(z)Z 
0 

When a function 
of several 

derivatives are 
denoted bY 

variableS occurs its partial 

attaching a subscript to the 

4 
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function, e.g., in Eq. (3.4-8): 

Numbered superscripts in parentheses are reserved 

to denote extensions of generators and their c orresponding 

coefficients. 
Numbered subscripts on a symbol denote several par­

ameters of similar kind, e.g.: constants of integration, 

which in some cases are functions of another variable (see 

when a set of variables is transformed into 
Appendix). 
another set, the new variables will be denoted by symbols 

entirely distinct from the old ones. As usual, O(E) denotes 

any quantity which, as g+o, approaches zero at least as 

fast as E. 
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1. HISTORICAL SURVEY OF ADIABATIC 

AND EXACT INVARIANTS 

In the earlier years of the present century, 

physicists were involved in discussions
2 concern~ng the con­

stitution of atoms and molecules (Bohr and Sommerfeld 

theories), the quantwn conditions in Planck's treatment 

of the harmonic oscillator, the apparent paradox between 

the "classical" Wien'S displacement laW and "statistical" 

Planck's radiation law, and many other interesting prob-

lems in Physics. AffiOn9 these Ehrenfest
3 

stated his adiabatic 

Pr
. . 4 1.nc1.ple as 

"If a system be affected in a reversible adiabatic 

way, allowed motions are transformed into allowed 

motions"; 

thl.

·s 
1 

quantities called adiabatic invari-

principle invo ves . ·n problems of arbitrary periodic motions, 

For 1.nstance, 1 
· nt T being the mean kinetic 

2Tjv is an adiabatic invar~a ' 

\) be~·ng the frequencY• ThiS adiabatic invariant 

energy and se of one-dimensional harmonic motions 

reduces to E/V in the ca ' . the total ener9Y· sommerfeld's quantum 

where E represents leS of adiabatic invariants, when 

conditions are other e~amP 
--------·----------- ge of a parameter k, in the Ham-t of chan . . . f. . t . *If the ra e system, ~s 1.n 1.n~ es1.mal the param-
. ·11atorY 
l.ltonian of an oscl. diabaticallY· 
eter is said to varY a 6 
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ac ~on or infinitely slow changes of the parameters in the t" 

phase integrals are considered. 

Many applications of Ehrenfest's adiabat1"c · pr1.nciple 

can be found in the literature
5

: perhaps the most out-

standing is the explanation of the Stark effect by schwarz­

child and Epstein
6

• 
Although adiabatic invariants were recognized to be 

only approximate to the lowest significant order, the 

question of whether their constancy might be valid to higher 

orders seems not to have been considered at that time or in 

that connection. 
Alfven7 showed that the magnetic moment of a spiraling 

particle in a varying magnetic field is a constant to first 

order of infinitesimal changes in the parameters involved; 

this was later shown to be true in the next order by Helwig 

for a general field
8

· 
d 

a vibrating harmonic oscillator 
Kulsrud considere 

initiallY constant, then varies in 

(whose frequencY w is and finallY becomes constant) and 

an arbitrary fashion, . b tic invariant to as many orders as 

found that Ejwis an adl.a a . 
5

9 Later, Kruskal proved the 
derivatl..Ve 

w has continuous 10 the gyrating particle. Lenard did the 

analogous result for d "llator, an many others have 
ic oscl.. 

sa f th anharmon 1 me or e . the invariance to all others. 
1 

bY provl..ng 
settled this last d simplified all the preceding 

12 ·fied an 
J<ruskal unl.. inv~riants to higher order for 

attempts of finding 

Hamiltonian systems 

adiabatiC 
lutions were 

periodic or nearly 

whose so 
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periodic. 
Since Hamilton's equations of motion for a system 

are a first-order autonomous system, he derived appropriate 

formal series solutions to such a system of differential 

equations and proved that the given system had exact solu­

tions for a large range of the independent variable and 

that the formal series represented the exact solutions 

asymptotically. 
Lewis13 applied Kruskal's theory to classical 

and quantum time-dependent harmonic oscillators and found 

exact invariants in both problems. The results, without 

using an adiabatic invariance approach, become exact or 

nonasymptotic. The systems discussed have a Hamiltonian 

of the form (1-1) 

d' ate pis its associated con­

where q is a canonical coer ~n , 

(
t) is an arbitrary complex function of 

jugate momentum, w 

Pos~tive real parameter. 
t, and e: is a ..... 

The exact invariants 

I are 
(1-2) 

(1-3) 

tem whose of a quantum sys ' w is taken as a positive real 
'llator "When 

for the harmon
ic osc~ ' h of Kruskal s t eory. 

hiS application 

constant, closes 

Q{l•ij[JI~--
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A more detailed consideration of the quantum time­

dependent harmonic oscillator and the problem of a charged 

particle in a time-dependent electromagnetic field was made 

by Lewis and Riesenfield. 14 Explicitly time-dependent in-

variants, their eigenvalues and eigenstates using operator 

methods, the connection between eigenstates, and solutions 

of the schrodinger equation \V"ere also found. As a limiting 

case of the exact invariants, they deduced the sudden and 

adiabatic approximations. 
15 

Using a different approach Symon investigated a 

general class of Hamiltonian systems which include both 

1
. ar classical harmonic oscillators. He 

linear and non- ~ne 

f
. d the terms "exact invariant" and 

also carefully de ~ne 
. . t" and calculated such invariants for 

"adiabatic ~nvar~an 

h 
Hamiltonian. 

several forms of t e 

In Classical Mechanics, 
knowledge of contact trans-

formations, as we 

· t transformations, admitted 
11 as po~n 

f 1
1 understanding of the re-

by a 

system, is necessarY 
fer a u 

't symmetrY 
lation between ~ s 

P
roperties and the quantities 

b of practical reasons I will, 
For a num er 

· · rved ~t leaves conse · attention to the problem 
·s confine roy 

however, in this theS~ of point transformations that leave 
he groups 

of determining t 1 through 5 indicated above. 
in cases 

invariant the systems 

·- --
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2. CONTINUOUS TRANSFORMATIONS GROUPS 

The transformation-group of one parameterl6 

Consider a transformation 

x = f(x,t) 

T: 

t = g(x,t) 

(2.1) 

o the new by means of which the point (x,t) is transferred t 

position (x,t) in the same plane and referred to the same 

coordinate system. The ~verse transformation, namely the 

operation of transferring the point (x,t) back to its 

original position (x,tl, is obtained by solving for x and 

t in terms of x and t, thus 
-1 

-1 T : 

x == f(x,t> 

-1 

(2. 2) 

t == g (i, t) 
the transformations T and T-1 in 

The result of performing order, is the identi~ transformation 

succession, in either 
(2. 3) 

X ::: X 

t == t of the transformations included in 

Consider the aggregate 

the familY 
X = f (X It i £) 

f = g(x,t; £) 

(2. 4) 
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where e: is a parameter which can vary continuously over a 

given range (assuming that f and g are analytic functions 

of x and t and differentiable with respect to e: in its 

range). These transformations are said to form a finite 

continuous group when any two successive transformations of 

the family are equivalent to a single transformation of the 

family. It has been assumed that every transformation in 

the group contains both the identity and the inverse trans­

formations. under these circumstances, the transformations 

given in Eg. (2.4) are called a group of one parameter. 

2. Infinitesimal transformations 

th
at e:=o is the value of the parameter which 

suppose 
produces the identitY transformation in the group-transforma-

( 2 • 4) ; thUS, 
tion law given in Eq. 

f(x,t; o) ::::: x 

g(x,ti o) = t 

].
·nfinitesimal quantity, the transformations 

If e: is an be such that x differs only infinites-

given in Eq. (2.4) will ThiS transformation will differ 

d t from t. 
imally from x, an · 

1 
from the identity transformation, and 

only infinitesimal Y transformation. Besides, it 
·nfinitesimal 

it is called an 1·-~-- ameter group has only one 
h one-par 

can be shownl7 that eac 
formation· Let 

infinitesimal trans 
x = x+e:~(x,t> 

(2.5) 
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j. 
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be the equations of the infinitesimal transformations, 

where 

~(x,t) = (fE)E=o 

n(x,t) = (gE)E=O 

(2.6) 

(2.7) 

and consider the variation of any analytic function F{x,t) 

due to the change produced by the infinitesimal.transforma-

tion {2.5) on x and t; thus 

or 

where 

aF(x,t) = F{x,t> - F(x,t) 

= F(X + ~x, t + At) 

= E (~FX + nFt] * 

p(x.,t) = p(x,t) + EUF(x,t) 

u = ~(x,t>}x + n(x,t>}t 

F(x,t) 

( 2. 8) 

(2. 9) 

is called the generatoE 
of the infinitesimal transformation, 

since UF represents it. 

ux = ~ (x,t) 

Ut = n(x,t> 

so that 

In particular 

(2.10) 

( 2 .11) 

------------------- the first order in E. 
terms onlY of 

*Retaining 

,. 1 
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The function F(x,t) given in Eq. (2.8) may be regarded as 

a function of x,t and E; regard x and t as fixed and let the 

function be expanded as a Maclaurin series in E. Thus 

F(x,t) = Fo + F~ E + ~ F~ E2 + ••• , 

where 

Fo [F(x,t)]E=O = F(x,t) = 

F' 
[() F (~,t) J = [F- ~{x,t) + Ft n(x,t)] 

= X 

and 

0 

F" 
0 

()F 
= ax 

()E E=O 

~(x,t) 
aF 

+a-t n(x,t) 

(2 • 12 ) becomes 
Therefore, Eq. 

mbolically, 
or, written sy 

= UF(x,t) 

+ .•. 

(2.12) 

E=O 

(2.13) 

(2.14) 
Eu p(x,t>· 

F(x,t) ::: e for the infinitesimal trans­
quations 

In particular, the e 

formations are 
X::: X+ Ei;(x,t) 

(2.15) 

t + ~n(x,t), and onlY terms up to the first 
used been 

retained· 
order in £ have been 

t ::: 

Where Eq. (2.10) has 
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A function F(x,t) is called invariant if, when x 

and t are obtained from Eq. (2.5) and for all values of E 

F(x,t> = F(x,t> (2.16) 

Then, for F to be invariant under the transformation (2.15) 

it is necessary and sufficient that 

UF = ~~~ + n~i = o 
(2.17) 

3. The extended grouE 
Consider a one-parameter group with transformations 

given as in Eq. (2.4) and let 

X = dx 
dt 

. 
* fxX -

(2.18) f<l>cx,t,x; e> 
= . 

gx X 

f Value Of 
the parameter e:. 

or a fixed 

Thus in general the 

equations 

z = f {X 1 t i e:) ( 2. 19) 

t = g(x,t; e:) 

x = f (1) (x,t,~i e:) 
as the first-extended group. 

t which is known 
form a group , 

Similarly, let 

tnore 

Conventions. 
and 

*See notations . ~xtended in the case of 
are eas11Ydifferential coefficients. 

tThese results d higher 
. bles an 

than 2 var1a 
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df(l) .. dx -

X = = 
dt dg 

f(l)+ f< 1 >x + ( 1) •. 
f. X 

t X X 
= 

-f(2}( •.• x,t,x,x; E) (2.20} 

9t + g x 
X 

also for a fixed value of E. Th e set of equations 

x = f (x,t; e:) 

t = g(x,t; e:) (2. 21} 

x = f ' 1 ' (x,t,x; E) 

~ = t< 2 > cx,t,x,x;E) 

form a group*, which is known as the second-extended gr _ oup. 

The infinitesimal form of these extensions can be 

written as 
(2.22) 

(2.23) 
~ = ~ + e:~ <1 > (x,t,x> 

i = x + e:~ <2 > cx,t,x,x> 

Only Of 
the first order in E and where 

retaining terms 
(2.24) 

and 
(2) 

"> -- ~t(l)+ *~x(l)_ x<nt + xnx- ~x!l)} 
I; (x,t,X,x " ' 

(2.25) 

--------------------- e easilY extended.in the case of 
*Th e resultS ar h·gher different1al coefficients. 

es and 1 . 

than 2 variables Inore 
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Then, 

{2.26) 

is the generator of the infinitesimal transformation in 

the first-extension, and 

{ 2. 27 ). 

is the generator of the infinitesimal transformation of the 

second extended group. 

4. Lie Algebra 
There are associated with any r-pararneter Lie group 

r infinitesimal generators which are characterized by their 

commutation properties. The algebra of the r-dimensional 

vector space is defined by the requirement that the generators 

Urn satisfy the condition 

u u - u u = [u , un] 
m n n m m 

{2.28} 

:::::: c~nur. 

{2.29) 
r 

Evidently, 

cr 
ron 

= -cnro, 

Where the C~n 
are calle d 

the structure constants of the 

algebra. Furthermore, 

[ [Xm' xn]' xr] 

the Jacobi identity: 

+ [ [ xn ' xr] ' xm] + [ [ xr ' xm J , 

in terms of the 

constants 
structure 

P cq 
C

P cq + cr~ pn + pill , .. 
nr 

reads 

:::::: 0 

X J = 0 n 

{2.30) 

{2. 31) 



I 
I; 

I~ 
I~ 
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I 
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I 
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In the problems considered here,· the generators have the 

general form 

(2.32) 

Then, 

(~mnn _ ~n m m n n rn m n· x nx +n nt -n nt + r;: nk- r;:nn~>at + 

(~mr;:n _ ~nr;:m + nmr;:n _ n m rrn n X X t n T;:t + ~ r;:k 

Since the extended generators obey the same commutation 
18 't . 1 

relations as the generators , 1 1s on Y necessary to 

calculate the commutation relations for the generators. 

5. Semi-simple groups 
The symmetrical tensor of the second rank* 

(2.34) 

::: 

Struc
ture constants is useful in providing 

constructed from 

--------------------- metric or Killing tensor. 

kno
wn as the 

*AlsO 
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a classification of groups. If the group is semi-simplel9, 

then 
(2.35) 
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ONE-DIJ.1ENSIONAL HARMONIC OSCILLATOR 

Consider Newton's and Lagrange's equation of motion 

for a one-dimensional harmonic oscillator 

.. 
S :; X + kX ::::: 0 

(3.1) 

where 
CL2) 

k::::: k(t) 

u< 2 > = i':"a +nat+ ~Cl) a·+ ~< 2 > a·· 
':> X X X 

(3.3) 

be the second-extended generator of a transformation-group 

obtained by seeking infinitesimal transformations of x and 

t that leave invariant the above equation of motion, i.e. 
s == 0 ( 3. 4) 

u< 2 > s = o 
whenever 

Explicitly, the action of this generator on s is 

::::: 0 

[ ~ (2) + k~ 

.2 ·3 0 . + l/J4X 
::::: 

llJ 1 + llJ 2'}{ 
+ l/J3'}{ 

( 3. 5) or 

With kn>x 
(2knt - k~'}{ + 

~ + k~ + 
l/Jl 

::::: tt 
+ 3kXn'}{ (3. 6) 

lPz 
:::::: 2~'}{t - ntt 

ljJ3 
::::: t; - 2n'}{t '}{'$ 

ljJ4 
::::: -n'}{'$ 

19 



n f ' 

j 
20 .. 

where the condition S=O (i.e.: x = -kx) has been used. 

Since ~l' ~ 2 , ~ 3 , ~ 4 are functions only of x and t, equation 

(3.5) holds for all values of the x, t, x variables if 

~1 = ~2 = ~3 = ~4 = 0 ( 3. 7) 

Equations (3.6) under condition (3.7) are named the deter­

mining equations. The last two of them are easily integ-

rated to give. 

n(x,t) 

~(x,t) 

(3. 8) 

(3. 9) 

where the Tls are functions only oft. In order to obtain 

explicit forms of the generators, it is necessary to know 

k (t) . 
· · al cases will be considered here. 

Three spec~ 

CASE 1. k(t} - w2 - constan~·* 
This case reduces to the simple harmonic oscillator 

of the problem is obtained due to 
and a great simplification 

the fact that (3.1-1) 

k = o. 
(3 

l-1) and the first two determining 
(3.9), • 

obtained as Using Eqs. ( 3. 8) , 
. ns to the T'S are 

equations, solut~o -iwt 

Tl (t) = ale 
iWt + a2e 

(3.1-2) 

Gill! • 
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where a
1

, a
2

, ..• , a
8 

are constants. The generators of the 

infinitesimal transformations can be written as 

u = 

with 

ul = 

u2 -

u3 = 

u4 = 

us = 

u6 = 

u7 = 

us = 

8 
I: b U 

n=l n n 

. 2 iwta 
~X e X 

. 2 -iwta 
-~X e X 

iwta 
e x 

-iwta 
e x 

+ 
1 iwta w xe t 

1 -iwta 
+- xe t w 

1 . 2iwta 2iwta 
+- e t 

~xe x w 

. -2iwta 1 -2iwta 
+ - e t 

-~xe x w 

1 
at -w 

xax 

(3.1-3) 

and the bn • s are 

It follows 

t nts related directly to above an•s. 
new cons a 

lt s that the coefficients 
these resu 

from 

d generators are 
of the first-extende 

1 .2) +iwt 
2 + ixi + w x e­

E.:(l) == -(wx 
1 
2 

E.: (1) 
3 
4 

(3.1-4) 



sJ1 )= -{2WX + ix)~~ 2iWt 

6 

and for the second-extended generators are 

2 +iWt 
-w e-

0 

.. 
x. 

+2iwt 
e-

22 

{3.1-5) 



CASE 2. k(t) = w2 +at. w , a are constants 
o----~---o~------~~~~~ 

Here one obtains 

k. = a = constant 

23 

(3.2-1) 

and k 1 s higher derivatives vanish. Using Eqs. (3.8), (3.9), 

(3.2-1) and the first two determining equations, solutions 

for the T's are obtained as 

Tl (t) = a
1
Ai + a 2Bi 

2 ~ + a7AiBi (3.2-2) 
T2 (t} = a5Ai + a6B~ 

T
3 

(t) = a
5
AiAi + a

6
BiBi + a 7AiBi + as 

T4(t} = a3Ai + a4Bi 

· functions 20 with the argument 
Where Ai, Bi are the A~ry 

· -2/3cw2 +at>· 
z = - a o 

(3.2-3) 

Hence, (3.2-4) 

z == -al/3 

2 
2 of these functions. Again, 
. are products 

and Ai, AiBi, B~ 

Can 
be taken as 

the generators 

\-lith 



u
3 

= I~Jz {Ai a } X 

u
4 

= I~Jz {Bi a } X 
2 

u
5 

= ~;z {xAiAi a + Ai a 1 X t 

The first extensions are 

2 • 2] • • 
~(ll~ -(~/Zl {x[k~i- (~il + x~iAi} 

5 

< (ll- - (~/Zl {x[kBI - o'lil 
2
1 + XsiBi} 

.,.6 -
AiBi] + ~AiBi} + X 

~jll~ -<~/Zl {x[kAiBi -

E.:~l>= x. 

24 

.<3.2-6) 
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The second extensions are 

. x + kx) ~ 
1
( 2 ) = -l1r I z { x 2 ( aAi + kAi) + 3 xA. i ( •· } 

~J2) = -l1rjz {x2 {aBi + kBi) + 3xBi (~ + kx)} 

~( 2 ) = -l1rjz {kAi} 
3 

~ (2) 
4 

~ (2) 
5 

(2) 

~6 

~ ( 2) 
7 

-= -/1r/Z {kBi} 

= -('lf/z> {xAi 

= - ('lf/z) . {xBi 

= _ {'lf/Z) . {xAi 

.. 
~(2) = X• 

8 

(3.2-7} 

. . 
(aAi + kAi) + 3AiAi (x + kx)} 

.. 
(aBi + k:Bi> + 3BiBi (x +kx}} 

+ kBi> 
. .. 

caai + 3AiBi (x + kx)}+ 

.. 
+ 2(x + kx) 
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CASE 3 • k ( t) = w 2 ea t ----=-o • w 
0 

and a are constants. 

In this case, 
. 
k = ak 

(3.3-1) 

and 
•. 2 
k =a k 

(3. 3-2) 

The corresponding solutions for the T
1

s become 

(3.3-3) 

where J , y * are the aessel and Hankel functions, respec­

o 0 

tively, 21 with the argument 

Hence, 

=lk 

The generators U are 

*J and Y ar 
0 0 

0 · E. of order v~ 0
• 

(3.3-4) 

(3.3-5) 

1

·ndependent solutions to Bessel's 
e t\'10 



with 

u1 = 
1 {x2j a 

;a 0 X 
+ xJoat} 

u2 
1 {x 2Y a - - + xY

0
at} 

;a 0 X 

u3 
1 {J a } = ra 0 X 

u4 = 1 {yo ax} 
ra 

1 . 2 u
6 

= - {xY Y a + y0 at} 
0. 0 0 X 

u
7
_ = 1 · {xJ t a + J Y at} a o o x o o 

xa . 
X 

The first extensions of these generators are 

+ x2J } 
~(1)_ 1 {x2kJo - xxj 

1 - -- 0 

ra. 

~(1)_ 1 {x2kyo - xxY + --- 0 

2 - ra. 

~(1) _ _L {jo} 
3 - .ra 

0 

·2 } x Yo 

~~1)= __!.- {Yo} 
/0. 

1 {~[kJo2- Cjo)2] + xJojO} 

~~1)= - a p 

27 

(3.3-6) 



t"(l}_ 1 { [ 2 
~6 - - - X kY Ct 0 

t"(l}_ 
~a -

. 
X 

cY. >2J + ~Y .y 1 
0 0 0 

and the second extensions are found to be 

~{2}_ 1 {kJO} 
3 - --ra 

~{2)= 1 {kY
0

} --4 ra 

+ 2(X + kx} 

28 

(3.3-8) 

X • ses the equation of motion 
. two ca ' 

In 
the follow2n9 . investigated from two different 

f 
·c oscillator 2S 'f 

or the harmon2 onceptually d1 ferent from 
lyses are c 

standpoints. The ana re-establishment of deter-
and the 

the previous three cases, 
iS necessarY· 

mining equations 



~ I 

! I 

CASE 4. k an independent variable. 

... o motion Consider the equat;on f 

2 
s=~+kx=O 

()t2 
where x is a function of ( t,k). Let 

X = X + e:.; 

t = t + e:n 

k = k + e:z; 

be infinitesimal transformations generated by 

29 

(3.4-1) 

(3.4-2) 

(3.4-3) 

(where ~.nand ~are functions of (x,t,k)) that leaves in­

variant S; i.e. 

whenever 
s = 0 

(3.4-4) 

us = 0 

Since the equation under study is of second-order, it is neces­

sary to use the first and second extensions of the generators* 

(3.4-5) 

(3.4-6) 

u<2l = u(ll + ~(2la~ 
r() + .;<1 > a + ~( 2 ) a •• 

= ;ax + nat + • k * x 

Where22 

---------------------
; ~ xk = ax/ak, ••.• 

~ ax/at, k-derivativ7 termds~ t~hen possible, 

b 
cons

1
dere 1n ese extensions. *Here, -x ~ "t 

Since s does not involV~ 
akk' d* I • • • I termS nee 

not e 

X 
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( 1) • * ~ (x,t,k,x,x) = ~t + X (~X - nt - xnx> 

(3.4-7) 

(2) • * .. ·*> _ c-C1} + X:c-(1) + x··cc-$1) • ~ (x,t,k,x,x,x,x - ~t ~x ~x - nt - xnx> 

* (1) 
+ "x ( ~x* - ~ - x~ ) t x. (3.4-8) 

* + x<~x - 2nt - 3x~x - x~x> 

{2) s is then 
The action of U on 

one obtains 
Using Eq. (3. 4-9)' 

:::: o. 

* 
+ ;c2~tJJs + x xtJJ 9 

(3.4-9) 

:::: 0 (3.4-10) 



with 

~2 = 2 ~xt - ntt + 3kxn X 

~3 = kxz; - r X "'tt 

lP4 = ~ - 2n XX xt 

~5 = -n xx 

~7 = -2z; xt 

1Pa = -z; XX 

lPg = -2Z: . ·x 

31 

(3.4-11) 

As a consequence of the independence of the 
variables 

the general solution to Eq. (3.4-10) is obtained if ' 
(3.4-12) 

from which one finds that the generator is of the form 
(3.4-13) 

9 
u = .E I<nun' 

n=l 
Where K is anY function onlY of k and 

n 

(3.4-14) 

"I' -



··-~ 
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us = + . +2i lkta 1 e +2ilkta 
J.Xe- + -- X lk t 

6 

u7 
1 

at 
(3.4-14) 

= -
lk 

us = xax 

Ug = -ta t + 2kak. 

The first eight generators are the same as those obtained 

in S.H.O. problem (Case 1, Eq. (3.1-3)) with k = w
2

• Their 

first and second extensions are, then, given in Eqs. (3. 1_4), 

(3.1-5). For the remaining generate~, u9 , these extensions 

read 

~<I> = x 
9 

~< 2 > = 2x 
9 

(3.4-15) 

(3.4-16) 



CASE 5. k a dependent variable. 

Instead of 

.. x + k(t)x = 0, k(t) = 

let the following set of equations be considered: 

.. 
x + kx = 0 

33 

(3.5-1) 

(3.5-2) 

where x and k are functions of t, a constant and k is treated 

as a dependent variable. Let 

X = X + €~ 
(3. 5-3) 

k = k + €l; 

be trans
formations generated by 

infinitesimal 
( 3. 5-4) 

u = ~ax + nat + ~ak 
. . the system of equations (3.5-1), (3.5-2), 

leaving 1nvar1ant 

i.e. whenever x + kx = 0 
(3. 5-5) 

U(x + kx) 
::::: 0 . 

whenever k - ak = 0; 
(3.5-6) 

u (k - aJd == 
0 

. of (x, t, k). 
funct1ons 

. bleS involved in the problem, it here ~,n and z; are 
of the 

Because 
var1a 

first a 
is to consider 

necessarY 

such that 

nd second extensions of u 

(3.5-7) 
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and 

=~a + na +~a + ~<l>a 
X t k X 

+ ~.Cl>a. + ~<2>a .. 
k X 

(3.5-8) 

where 
(3.5-9) 

z;Cl) z; + k(z; -n > + x~ - .Xk:n - k
2
n = t k t X X k 

(3.5-10) 

(3.5-11) .. 
- X 

or 

(3.5-12) 
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The action of u< 2 > on Eqs. (3.5-1), (3.5-2) implies 

(3.5-13) 

(1) {~ - a~}k=ak = o. 

Use of Eqs. (3. 5-10), (3.5-12) in Eqs. (3.5-13) gives 

= 0 

(3.5-14) 

ws + :Xw6 = o 

with 2 

1/11 = ~tt + 
k(~+2a~tk) + a k(~k+k~kk) 

+ x{~+k(2nt-~x> 
+ 2ak

2
nk} 

n + 2ak(~xk-ntk) -
2 

1/12 2 ~xt -

a k(nk+knkk) 

::: tt 

(3.5-15) 

tiJ4 == 

. dependence of the variables, 
of the J..n 

Again, as a consequence (3·5~14) is found if 
. n to eqs· 

the general solutJ..O (3.5-16) 

- 1/J === o, 
'''2 === • • • - 6 

1/J == 'Y 1 



J 

from wh' ~ch the 

9 
U = E 

n=l 

36 

generator is* 

<3.5-17) 

where n 
n 

is w~th argument y = any function · 
1 2 (at-1nk). 

The u n are 

ul - 1 {ax2k S a 
ra 

+ xJ a 
0 X 0 t 

+ axkJ a } 
0 k 

u2 = 
1 . 2 * - {ax k y a 

ra 
+ xY a + axkY a } 

0 X 0 t 0 k 

u - 1 3--ra 
{J a } 

0 X 

u4 = 1 {Y a } -ra 0 X 

us 
1 * + J2a + akJ2a } 

= a{a.xkJ J a 0 0 X 
0 t 0 k 

u6 = &{a.xkY0~0 ax 
+ y2a + akY2a } 

0 t 0 k 

(3.5-18) 

o and y being the sessel and aanKel functions (of 
0 

d 
o r er O), 

resp 
ectivelY• with the arguwent (3.5-19) 

ana the over-star weans their derivative with respect to K. 

*Further detailS are given in AppendiX· 



and 
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The coefficients of the first extensions are 

~ ( 1) 
3 
4 

~ (1) = 
5 
6 

~(1)= 
7 

* 
-1/2 

J 
{k (*0)} 

= a Yo 

*2 * J J J2 J 
-2 

2 • 0 + a(2k-ak) ( 0 *0 )} 
{xk ( ~) a xkk (* 2 > y y 

-a 

-2 
-a 

-1 
a 

-
y 

0 
Yo 

{ xkJ0 Y0 -
2 • * * 

a xkkJ0 Y0 
+ a (2k-ak) 

a •. • 
+ k k x} 

r(l):::: z;(l) 
"'3 4 

(1) := r(1) = 0 
= 's "'9 

0 0 

(3.5-20) 

* J y + 
0 0 

(3.5-21) 



~~------------------------~----~~~~ 
1 I 

I , 

I : 
I 
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The result of calculating the coefficients of the second 

extensions is 

E::i2) 

2 

1 = ra 

1 
- cxk 

1 

{ 

--ra 

1 [ (1~-ak) xik -
2 .• 

a2k 
ax kk 

J .. xk)] ( 0) - 3akx (ax + Yo 

.. ·2 • } ·2 
(2cxk(k-cxk) (XX + X ) - (a,X-kX Xk 

* 
J 2 J 

2 0 2 •. k. ><*0)]} 
1 [k ( ) - a ( kk -

{ ;2~ Y0 Yo 

.. 
_!_ [2(ak-k) xk + axkk] 

z-(2)=- .!.{ 2 
~s a a k 

6 •• - J(2 } ] 

[ 2 k k
.) x·k· + ax(kk 

- (CL -

• • + 
[2(Ctk-k)"k 

* * .. • 2)] J y 
ax(Kk - k o o 

(3.5-22) 



r: 
I ! 

z:(2)- •. 
-,8 - X 

~(2) = 0 9 . 

39 



4 . LIE AJ .. GEBRA 

In order to obtain the classification of the Lie 

Algebra involved in the above problems, a study of com­

mutators and metric tensors must be developed. 

The set of commutation relations for generators u rn 

listed in Eqs. (3.1-3), (3.2-5), (3.3-6), (3.4-14), (3.5-18), 

are given in Tables 1 and 2. cases 1 and 4 have the same 

commutator table between u
1

, u2 , .•. , U8 in each case, and 

the extra generator u
9 

(Case 4) commutes with every one as 

is seen in Table 1 . The same situation occurs with u9 

(Case 5) and the set of commutators for cases 2, 3, 5 are 

Written in Table 
2

• These results show that the algebra is 

closed in each case. are constructed, using the struc­
The metric tensors 

d f
rom these tables, and their forms 

ture constants deduce 
spending Table. 

are given below the corre 
in cases 1 and 4, 

Furthermore, 

= -

and in cases 2, 3 and 
5

' 
}6:fO, 

det [gab] = -12(6 

0 a b = 1, 2, •.• , 8, 
' 

a, b == 1,2, ••. , 8, 

criterion, that the 
tO cartan'S 

~hich indicate, according . ple 
send-sJ.m 

in each case. 

eight-parameter grouP is 

40 

(4.1) 

(4.2) 



.. t:l . 
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As is noticed in Matrices 1 and 2,the metric tensors 

are non-diagonal. Linear combinations of generators can be 

taken, which will reduce them to diagonal form and a solu­

tion to an eigenvalue problem provides the standard form of 

the generators. Each case is studied separately. 

CASES 1, 4. * Let 

1 {Ul + u2 + i (U3- U4)} 
Ql == - 2 

1 {Ul + u - i cu3 - u4 > l 
o2 == 2 2 

1 {-i (Ul - U2) + 0 3 + 0 4} 
Q3 == 2 

1 {' (Ul - U2) 
+ u3 + u4} 

Q4 == - J. 2 
( 4. 3) 

Os == u7 

Q6 == us 

1 i (U6 - Us) 
Q7 == 2 

1 <Us + u6> 
== Og 2 

listed in Eq. (3.1-3). 
. f generators 

be a linear combinatJ.on o 
tors ist 

The "new" set of genera 

a _+ Wl X sinwt at 
+ ~2) coswt ~ 

== (1 -

,,, . 
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(4.4) 

. 1 . 
0

7 
= x cos{2wt)ax + w s1n{2wt)at 

0
8 

=-x sin(2wt)a + 1 cos(2wt)a X W t 

The commutation relations of these generators are listed in 

Table 3, and the metric tensor corresponding to .these 

generators is also evaluated there. Furthermore, 

= ~ 0 a,b = 1,2, .•• ,a. 

Wulfman and Wybournel found the standard form of these gener­

ators, in the case w=l, and the comparison of the present 

results with their work shows that ul' U2' ···• Ua are 

proportional to their E :!: a. • E + ~' E + y' H1 and H2 • 

Case 2. Let 

(4-5) 

U } + cos 2~ (2U7 ~ u8 > 

sin 2A cus- 6 ·. U ) + s1n 2A (2U7 - u8} 

-cos 2A (Us - 6 * given in Eq .. (3.2':'"·5}, 

g
enerators 

b 
· n of 

e cornb.l·nat.lO 
a linear 

Os ::::: 

Q6 
::::: 

Q7 
::::: 

Og ::::: 

. are too long to be pre.,. 
Q •s · f d · 

f 
the ~ re stra1ght- orwar us1ng 

f 
ms o tion a 

*Explicit o:r calcula 

:ented here, butc1~~f. 
qs. (3. 2-5) and 





(3.5-18), with ~ being a function of a and w .* 0 
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As in the above cases, the commutation relations of 

these generators are listed in Table 3. 

As is known1 , the local. Lie group of Newton's and 

Lagrange's equation for the oscillator is SL(3,R} for the 

case k=l, and since the generators Qm' in all problems con­

sidered here, have the same set of commutation relations, it 

is concluded that the local Lie group is still SL(3,R) and 

also that the generators o
1

, o3 , o5 form a compact subgroup 

S0(3). 

is given in 
~ and w0 

of V on 
*The dependence 
5 case 3. 

I 

I 



-===,'· 

Table 1. Commutator tabl~ for generators Urn in Cases 1 1 4.* 

u~n u1 u2 u3 u4 u5 u6 u7 u8 u9 

ul 0 0 -u 5 
-u -3iu 1 8 0 -2iu2 -iu 1 -u 1 

0 

u2 0 0 -u1+3iU 8 
-u. 

6 2iU
1 

0 iU 2 -u 2 0 

u3 us u 1-3iu 8 0 0 0 -2iU 4 -iU 3 u3 0 

ul\ u 1+3iU 8 UG 0 0 2iU 3 0 iu 4 u4 0 

us 0 -2iU l 0 -2iU 3 0 -4iU 7 -2iU 5 0 0 

u6 2iU 2 0 2iu 4 0 4iU7 0 2iU6 0 0 

u7 iU 1 -iu 2 iU 3 -iu 4 2iu 5 -2iU 6 0 0 0 

us ul u2 -u3 -u 4 0 0 0 0 0 

Ug 0 0 0 0 0 0 0 0 0 

*The extra column and row for u 9 do not count in Case 1. 
,j::o, 
(.11 

. ..-. 



--~~ 

/ 

Table 2. Commutator table for generators Urn in Cases 2, 3f 5.* 

u~n ul u2 u3 u4 us u6 u ... UB u 
I 9 

ul () () -us -U 7+2U 8 0 u2 0 -u 1 
0 

u2 () () -u -u 1 8 -u 6 -u 
1 

0 -u2 -u2 0 

u3 us u1 +us 0 0 0 u4 u3 u3 0 

u4 u 1-2u 8 UG 0 0 -u 3 0 0 u4 0 

us () u~ 0 u3 0 2u7-u8 us 0 0 

UG -u2 0 -u 4 0 -2U7+u8 0 -u 6 0 0 

u7 0 u2 -u 3 0 -u 5 UG 0 0 0 

us ul u2 -u 3 -u4 0 0 0 0 0 

u 9 0 0 0 0 0 0 0 0 0 

*The extra column and row for u 9 count only in Case 5. 
~ 
~ 

I 

-· [ 



Table 3. Commutator table fer generators Qm. 

~ Ql Q2 Q3 Q4 

Ql 0 Q7-JQ6 Q5 Qa 

Q2 -Q7+JQ6 0 -Q -Q 8 5 

Q3 -Q Qa 0 -Q -3Q 5 7 6 

~4 -Q 8 Q5 Q7+JQ6 0 

Qs Q3 Q4 -Q 1 -Q 2 

Q6 -Q 2 -Q l -Q4 -Q3 

Q7 Q2 Q1 -Q 4 -Q3 

Qa Q4 Q3 Q2 Ql 

Q5 Q6 

-Q 3 Q2 

-Q 4 Q1 

Q1 Q4 

Q2 Q3 

0 0 

0 0 

-2Q 8 0 

2Q7 0 

Q7 

-Q 2 

-Q 1 

Q4 

Q3 

2Q8 

0 

0 

2Qs 

Qa 

-Q 4 

-Q 3 

-Q2 

-Q 1 

-2Q 7 

0 

-2Q 
5 

0 

--- ----- ~: 

,j::o. 

-.J 
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0 0 0 -3i 0 0 0 

0 0 3i 0 0 0 0 

3i 0 0 0 0 0 

~a~ - 4 0 0 0 0 0 0 

0 0 0 0 6 0 

0 0 0 6 0 0 

0 0 0 0 0 -3 

0 0 0 0 0 0 

Matrix 1. Metric Tensor for cases 1 4.* , 

0 0 3 0 0 0 

0 -3 0 0 0 0 

~a~ 
-3 0 0 0 0 0 

- 2 0 0 0 0 0 0 

0 0 0 0 -3 0 

0 0 0 -3 ·0 0 

0 0 0 0 0 2 

0 0 0 0 0 1 

Matr· 2. ~X 
Metric Tensor 

tor cases 2, 3, s.* 

-12 0 0 0 0 0 0 0 

0 12 0 0 0 0 0 0 

&aJ 
0 0 -12 0 0 0 0 0 

-
0 0 0 12 0 0 0 0 

0 0 0 0 -12 0 0 0 

0 0 0 0 0 4 0 0 

0 0 0 0 0 12 0 

0 0 0 0 0 0 

l1 atr· 
tor the 

generators Qm· 

~X 3. 
Metric tensor 

0 
are eneluded in cases 

4 and s. 

*The generators 9 



5. LIMITING BEHAVIOR 

The purpose of this chapter is to show that the 

generators found in the problems where k is a function of 

time reduce to those in which k is constant. 

Initially, 
2 

case 1 k = w 
2 

case 2 k = w + at 
0 

k = 
2 at 

case 3 
w

0
e 

5 k = ak 

that 
in cases 2, 3 and 5, as a 

It is evident 
ap h a constant. 

case 

Preaches zero, k approac es 

f d in Eq. (3.2-5) involve 
CASE 2. The generators oun .. 

Airy functions and 

functions and the~r 
products of these . 

· s ~s of these funct~on 
der· l.Vatives. The argument 

-2/3cw2 +at>· 
_ z == -a o 

- u 

~hus · 
• 1/3 

. -z == a • 
u == 

d u tends to +oo; 
to -q;J an 

~s q approaches zero, z goes ·on of Airy's functions 
h sentat~ 
ence the asymptotic repre 

·red· 
\tlith iS x:-eqU.l 

large argument . c-u> and 
The functions AJ. 

49 

23 
are defined as 

aic-u> 

(5-1) 

(5-2) 
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Ai(-u) 
1 ru { 2 3/2 . 2 3/2 

= 3 Jl/3(3 u ) + J -1/3 ( 3u ) } 

{5-3) 

Bi(-u) fu/3 
2 3/2 2 3/2 

= {J_l/3(3u ) - J 1/3 ( 3u ) } ' 

and since the Bessel functions included have a large argu-

ment d f " . 2 4 . an ixed order 
1 

the 11 Hankel type expans~on l.S 

applied· · , ~.e. 

Jv (u)- ,l2j11u cos (u-1Tv/2 - 11/4) + 0( lui
312

l (5-4) 

The argument of the Bessel functions is 

2w3 2 3/2 
2 3/2 _ o ( 1 + at/w ) · 
3 u - -3cx 0 

U · as a. approaches zero 
s~ng the Binomial expansion, 

{5-5) 

2 3/2 + w t + a, 
3u o 

\-~here {5-6) 

lienee 
I 

Al = a -

(5-7) 



~·_: 
(· 

I 
I 
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where 

(5-8) 

Two of the basic factors in the generators, in terms of u, 

are 

and using Eqs. (S-?), their limiting forms as a goes to zero 

are 

/n;z Ai(z) = (i/v'W~> cos(wot + A) 

ln;z Bi(z) = -(i/~> sin (wot +A), 

Wh of the fact that 
ere use has been made 

lim cu Ill> 
cx-+o 

lim fw2 + at 
= a-+-o o 

Si,.., · that 

::: (J.) • 
0 

•ullarly, it is found 
t + A) 

In;; Ai(z} = -i~ sinCWo 

- (W t + A) 

(5-9) 

(S-10) 

ln/z Bi(z} = ilwo cos o . the remaining 
to obta1n 

One procedure t 
may use the same U . Le 

g
enerators m 

e~p in the 
~essions contained 

-qu -- lim 
a-+-o 

:rn = 1 
2 • • • I 

I f 

8, 
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represent the limiting behavior of the generators Urn. Thenl 

by using the above expressions, one can obtain 

... -(i/~){x2sin{w t+A}ax ul = 0 0 

... 
- ( ilw 0) { x 2cos (w 0 t+A) a X u2 = 

u
3 

= (ij~w0 ){cos(w0t+A)ax} 
U4 = -(i/~Wo){sin(wot+A)ax} 

from which the 

... 
Ql = + -

2 

.., 
Q3 - + -

4 

Os = -fDs + 06} 

... ... 
Q6 = Ug + cos2A - -

1 x cos (w
0

t +A> at} 
wo 

+Lx w 
sin (W 

0 
t+A ) a t} 

0 

( 5-11} 

(5-12) 

(207 - us> 
u6> 

sin2A <Us c2u7 - 0s>' ... 
Q7 = ·n 2A 

- {j6) 
+ s.J. -... -cos2.A <Us (4-4). 

Og = in r;q. 
those tO 

};)tad 
tors 

ident.ical 
genera 

Uce 
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CASE 3. The generators listed in Eq. (3.3-6) in­

Volve Bessel and Hankel functions (of order 0) and products 

of these functions and their derivatives with the argument 

given in Eq. (3. 3-4). 

As a goes to zero, z approaches +~, so that the 

IIH ankel" type expansion is used to find the asymptotic be-

havior of the generators; i.e., Eq. (5-4) and* 

y (z) _ /21r/Z sin(z - n1T/2 - 1T/
4

) 
+ o c I z 1-312 

> • 

n (5-13) 

Expand;ng in Taylor's series and taking the 
• Eq. ( 3 • 3-4) 

lirnit 

'ttl here 

as a goes to zero, 

z -7 w t + 0' 
0 

a = 2w /a + 0 (cd 
0 

14 ) 
it is found that 

u · > c s- , 
Slng Eqs. (S-4) I cs-13 I 

lim 
a-i-O 

J (Z) 
_o -

/0, 

y (Z) 
_E--

ra 
_ ~ 2w

0
fa - 7T 

lJ = 0' - 1Tf4 

·n(W t + JJ)r 
S:L o 

14 +o<ctl· 

(5-14) 

( 5-15) 

(5-16) 
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Furthermore I 

lim 
a-+o 

lim 
a-+o 

. 
J (z) 

0 

. 

= -(w jn) 1/ 2 sin{w t + v> 
0 0 

Yo(z) --- = (1TW ) 
1/

2 
COS (W t + lJ) ra o o 

(5-17) 

and so 
on. The use of Eqs. (S-15), (S-17) and a similar 

Procedure provide the remaining expressions such that the 

limiting behavior of the generators is found to be 

-lfn = 
lim u 
a-+o m 

m = 1, 2, ... , 8, 

Where 
ul = (wo/11)1/2c-x2sin(Wot+~Px +~X cos(wot+p)atl 

1 / 2 2 
~ + .!- x sin (w0 t+ll) at} 

u2 = '""'a) {x cos (wot+~) "x "'o 

u3 -
(S-18) 

-u4 -
... 
us -



The f ollO\'ling linear . combl.nations 

(7Tul ) -1/2 o {cosJ.I (1ru1 + w -o U4) 

+ sinJ.I (U-2 + 1TW 
- 0 

06 = u­s 

(1TW ) -1/2 { . o si.nJ.l (7TU1 + wo u-

COSJ.I (U 2 
+ 7TW 

0 

4) 
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(5-19) 

-sin 

.,.. 

0
a = cos 211 (" u

5 
- ~ u6 J + sin 211 (2il7 - ilal 

arne generators as those found in case 1. 
the 5 

the CASE 5. A different approach is followed here and 

results 
l!q of the above case 3 will be used. The use of 

. (I-22) * 
one in the generators found in Eq. (3. S-18) enables 

to write 

(S-20) 
0 2 = -.l:-{ lk x

2
Y' a ;a oX 

u3 = _l:_ 

"---- ra 
*See AppendiX· 



and the 

With the 

u4 = 
1 
-~ y a 
ra 0 X 

us - 1 {lj{ X -a 
J J' a + J2a + akJ2a } 

0 0 X 0 t 0 k 

u6 - 1 {/k X -
y2a 

a 
Y Y' a + akY2 a·} 

0 0 X + 0 t 0 k 

u7 1 {lj{ X -- J Y' a 
a 

+ J Y a 
0 0 X 0 0 t 

+ akJ y a }· 
0 0 k 

an el functions all have the 
Bessel and H k 

z = 2 lk 
a 

restriction 
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argument 

(5-21) 

(S-22) 

~s a tend . 
J s to zero, z goes to ~. k approaches zero, and 

olv'Ci" Y 
b ' of/a • JQ/Ia, YC,f.la and their products haVe a finite 

con ' which imply that the coefficients of ax and at 

• 
k = ak 

eha"· ~or 
ThiS fact 

"er ge. 

fast t er than the others because of their B factor. 

edu 
ces the generators to those in case 3 if Eq· (S-22) is 

cs-23> 
"Used -for 

being 

it implies that 

k 
2 at 

== w e 
0 

constant-



CONCLUSION 

The results of a study carried out as an attempt to 

obtain some general characteristics of the invariance groups 

Lfferential equations describing time-dependent harmonic ford. 

oscillators 
, show that oscillators with quite different time 

dependencies admit identical or very similar local Lie 

grotlp s of point transformations. In cases 2 and 
3 

the sys-

tem has the same SL(3,Rl Lie-algebra as the simple harmonic 

oscillator or case 1. In cases 4 and 5, the SL(3,R) is a 

8
Ub-al . . 1 generator which com-

gebra, there being an add2t2ona 

lllut es with the eight SL(3,R) generators. 
and their first and second 

The local Lie groups, 

e>cte . 
ns~ons 

h 5 in thiS work, do 

obtained for cases 2 throug The asymptotic connections 

not seem to have appeared before· are also neW· 

est ablished between these groups art of an investiga-

This study was underta~en as P . t invariance under po2n 
Attaining thiS l.on · . tween t· 

of the relationsh2P be 

t:ta 
nsformations 

9oal might give a 

'-'a:t . 
l.ance principle. 

tn t . . h~s direction, the 

the:t 
avenues 

ftn· l.te 
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of curves should illuminate the physical significance of the 

results obtained here. 

This work also suggests that for a wide variety of 

cases in where k is allowed to vary the equation, 

X + kx = 0 

adml.·t · t transformations SL(3,R). 
s the local Lie group of po~n 

It t to establish just 
would evidently be of great interes 

how generalizable this result is. 
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APPENDIX 

AN EXAMPLE OF SOLVING THE DETERMINING EQUATIONS 

Case 5. k a deeendent variabl~ 

Reordering of Eqs. (3.5-15) under the condition of 

Eq. ( 3 • 5-16) gives 

:::: 0 

+ 3k:Xnx == 
0 

~ zN~ ) + azk (~k + k~kk) 
~tt+ k(~ + '-"S7tk 2 } :::: o. 

_ ~.) + 2CLk nk 

+ x { c; + k ( znt ~ 

tnt . 5 gives 
egr equat1on 

ation of the above 

~ = akxY + ak0 + ~ 
cr-1> 

n - xY + o 
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Where 13 y , , 6 I cp and 8 are functions of (t,k) obeying the 

Conditions 

8t + etk Bk - ctB = o 

ytt + 2akytk + 

(t,k) 
8 t t + 2 ak e t k + 

~he t 
ransformations 

T = ext 

K = Ink 

2 2 
a k Ykk 

2 2 
a k ekk 

:ted~ 
Ce Eqs. (I-2) to the form 

(e-KB) + -Hf3) == 0 

2 
+ Ct. kyk 

2 
+ a. k ek 

(e K I< 0 T 1 e Y == 
+ ~ YTT + 2yKT + YI<I< a 

0 1 ei<e :::: 

{~ '~). 8
TT + 26KT + BI<I< 

+ ~ 
CL 

~~ 
~ t 26 

l:'ansformations 

Y == ~ (T-K) 

r ::: 1 (T+K) 
2 

+ ky = 0 

+ k6 = 0 (I-2) 

(I-3) 

(I-4) 

(r ... s> 



on Eq. 

(r ,y) 

\>I he 

(I- 4 ) give 

(ey-r 8) r - 0 

yrr + 1 r-y 
-2 e Y - 0 

a 

a + _1_ er-Ya 
rr - 0 

a2 

cS 2 rr a <Pr - 0 

of the first equation 

f3(r,y) = C er-Y 0 , 

(I-6) 

+ 0) = o. 

of the above set yieldS 
(I-7) 

re c o is function of the variable Y· 

~he remain· d t 
1

ng equations in (r-6) are transforme 

0 

ypp + e2Py == 0 
(I-B) 

a + e2Pa 
PP 

== 0 

0 4 <Pp == 0 
pp a 

(I-9) 

64 
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y(p,y) = ClJo + C2Yo 
(I-10) 

a (p,y) = C3Jo + C4Yo , 

1' 2' c
3

, c
4 

are functions of y and J 0 , Y0 are Bessel Where C C 

and Hank 27 P el functions with the argument e . 

~on of the last two equations in (I-8) gives Cotnbinat. 

'l'he 

A (p ,y) - 0 (p,y) +.!. c (l 0 

Solution to Eq. 

28 
(I-ll) reads 

(I-ll) 

(I-12} 

(I-13) 

(I-14} 

(I-15) 

(
I-15) in (I-12) 

using 

(I-16) 

·ons ~ith 
functJ.. 

these 
and the 

of Y 
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Going back to the original variables (tfk), the 

solutions to Eq. (I-2) read 

a = 

y = 

c k 
0 

6 = C3Jo + C4Yo 

0 2 c Y
2 k co = C6Jo + C7JoYo + 8 o - ~ 

~he-...e . r derivatives 
... th y and thel. 

e argument of J 0 , 0 

2 z =- lk 
a 

Tl = n xJ + 
1 0 

(I-18) 

is 

(I-19) 

(I-20) 
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Where j * o' Yo are the derivatives with respect to k; 
i.e~ 

and the 

* J 
0 

= 
1 J' 

0 

(I-22) 

Qn' s have been relabeled to agree with Eq. (3.5-17). 

(I-21), the generators U in Eq. (3.5-18) are im-

mediately n obtained. The extra factor a, which appears in 

them, is chosen for a proper convergence of generators 

From Eq. 

sozne of 

\olhen a approaches zero (see chapter 5). 
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