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INTRODUCTION

In general, a physical system has invariant gquantities

which are very often related to its symmetry and to the in

variance of the equation that describe it. A detailed study
of the invariance property of the differential equation will

be helpful in understanding this relation.

ork is concerned with a preliminary investiga-

The w
jch leaves invariant the Newtonian

tion of the Lie-group wh
ation of motion for

of review of Ehrenfest's adiabatic

and Lagrangian equ a one-dimensional
harmonic oscillator- A bri

ter treatments on exact and adiabatic

principle and the la
1 be presented.

invariants wil
rts with a histori

The program sta cal survey of adiabatic
nts in Chapte
sformations in C
rential equation of the har-

r 1 and a review of the theory

and exact jnvaria

group tran
the diffe

hapter 2.

of continuous

In Chapter 3,

. is consi py applying Lie's theory,

i ; dered and,
nmonic oscillato

- i t leave it invariant are
infj i mations tha
1nf1nite51mal transfor

sought. .
ter jnsight into the general charac-

To obtain & pet
e equations: the following particu-

teristics of oscillator tyP |
ed in detail:

lar cases will be studl
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For the eqguation

2
a”x 4 x(r) x = o,

dt

where x is considered as a function of t, t being the inde-

pendent variable:

2 ] .
case 1 k(t) = w w = constant
2
Case 2 k(t) = wy + ot
Wy and o are constants
_ . 2_at
case 3 k(t) = w,©

Case 4. For the equation

0 X 4 kx = O

where k and t are considered as independent variables and x

re

as a function of ¥ and t-

C 5 For the system of equations
ase 5.

jo
"
+
o
o]
|
o]

dk . gk =°

dt .

t variable, x and k are functions of t.
n

i ndepende
e indep and their first and

t bei th
e 1abeled Cm
i h case
, jculated 1n eac .
. ons will be c@

second extensl . _od that in Case 1, the set of gen-

ed by R- L. Anderson (1974)

cen obtain
d by Wulfman and Wybournel

ready P :
as develope

ation

erators had al

and their classifi€




3

with the
result that the global Lie~group for th
e harmonic

oscillator is SL(3,R).
Once
the generators are found, the program
continues

in Chapter 4 by calculating the sets of commutator

metric tensors. It will be found that the Lie alg:band e
closes under the commutation operation in each case raTh
ie-group is semi-simple and still SL(3,R) in Case:

local L
2 and 3. Furthermore, in both Cases 4 and 5, the sub

-set
uding one generator obey the

of generators obtained by excl

same Lie algebra as in the remaining Cases.

Chapter 5 dea
tors (as @ approaches zero) for the

Finally, 1s with the asymptotic

behavior of the genera
and it also

s of the case 1.
n for the generators in the

Cases 2, 3 and 5, will be shown that they con-

o the generator

verge t
a calculatio

A detaile

closes this work.

Case 5, given in the Appendix,
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NOTATIONS AND CONVENTIONS

In this work, a number of symbols are used to repre-

sent physical variables. Physical time is represented by

the letter t and position by X. Unless otherwise would be

specifically stated, position's time-derivative is abbrevi-

ated by using an over-dot: i.e.

. = 9
X = 3t

and the same treatment is followed for all variables which
for instance;
(3.3-3), and so on. Similarly,

depend only on ti see T, 1n Eq. (3.9);

Ai in Eq. (3.2-2)i ¥, in Eq-

e is abbreviated py an over-star, i.e.

the k~-derivativ
z = z(K)

_a_ }r
oz = dk (JO(Z)

s

. : of a function with respect
. the derivative
and a prime denoté®

to its argument, e.g-?
_ a z))
It is then evident that
| 4
j\l(z) = Ai(Z)Z
)*
* ] Z
= J' (2 .
JO(Z) o 1 sariables occurs its partial

severad )
of cript to the

4-ion )
When a functlo attaching a subs

ed bY
derivatives are€ denot 4
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function, e.g., in Eqd. (3.4-8):
(1
{ ) E 85(1)
*
® oX

Numbered superscripts in parentheses are reserved
e

d their corresponding

to denote extensions of generators an

coefficients.
Numbered subscripts on a symbol denote several par
ameters of similar xind, €.9.: constants of integration
I 4

ses are functions of an
£ variables is transformed into

which in some ca other variable (see
when a gset ©
W variables will be den

4 ones. As usual, 0(€) denotes

Appendix) .
oted by symbols

another set, the Dne

nct from the ol

entirely disti
approaches zer

any quantity which, as €70 o at least as

fast as €.
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1. HISTORICAL SURVEY OF ADIABATIC

AND EXACT INVARIANTS

In the earlier years of the present century,

.. . . . . 2
physicists were involved 1in discussions® concerning the con-

stitution of atoms and molecules (Bohr and Sommer feld

theories), the guantum conditions in Planck's treatment

jllator, the apparent paradox between

of the harmonic 0OSC
the "classical" Wien's displacement law and "statistical"

and many other interesting prob-

Planck's radiation law,

among thesé Ehrenfest3 stated his adiabatic

lems in Physics:
Principle4 as

be affected in a reversible adiabatic

nif a system
s are transformed into allowed

way, allowed motion

motions";

ves quantities called adiabatic invari-

this principle invol
bitrary periodic motions,

i g of ar
ants.* For instancer in problem
2T /v i sdiabatic jpvarianty T peing the mean kinetic
is an . F
frequency. This adiabatic invariant

4 v beind the
e_dimen51onal harmonic motions,

n the cas

energy an

reduces to E/V i
/" sommerfeld's quantum

where E repr€
amnm
conditions are other examp

— - nange of 2 arameter k, in the Ham-
£ c ‘i's infinitesimal the param-

te m
x1f the ra systel'’
. 1 1atory 7
il . an oscC 1 . tlcalIY’
etzgniznsggd ro vary adiab?

6
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infinitel -
y slow changes of the parameters in th
e action or

h *
phase integrals are considered.

M i i
any applications of Ehrenfest's adiabatic
prinCiple

standing is the i
explanation of the Stark
effect by S
chwarz-

child and EpsteinG.

Although adiabatic invariants were recognized
to be

e to the lowest significant order, the
14

only approximat
n of whether their constancy might be valid to hi
igher

questio
o have been considered at that time o
r in

orders seems not t

that connection.
4 that the magnetic moment of a spirali
ing

Alfven7 showe
ying magneti
changes in the param

c field is a constant to first

particle in a var
eters involved;

f infinitesimal
wn to be tru

order ©
e in the next order by Helwig

this was later sho
L gield®.
jdered @ vib

'nitially constant,

for a genera
rating harmonic oscillator

then varies in

(whose fregquenc

y fashion:

found that E/AiS an adiabati
2 Latexr,

s derivatives .
ting particle.

y becomes constant) and

s many orders as

an arbitrar
c invariant to a

Kruskal proved the

@ has continuou
Lenard10 did the

analogous result £oF the gyra

same for the anharmonlc osc1llator, and many others have

settled this jast bY proving the snvariance to all ehers. 11
. ~1ified all the preceding

2 . .
Kruskall unifle
invariants to higher order for

ndind ad
s were pericdic or nearly

attempts of i
solution

Hamjltonia
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periodic. Since Hamilton's equations of motion for a system

are a first-order autonomous system, he derived appropriate

formal series solutions to such a system of differential

eguations and proved that the given system had exact solu-

tions for a large range of the independent variable and
that the formal series represented the exact solutions

asymptotically-

Lewi513 applied Kruskal's theory to classical
and guantum time-dependent harmonic oscillators and found

oth problems. The results, without

exact invariants in b
using an adiabatic invariance approach, become exact or
nonasymptotic The systems discussed have a Hamiltonian

of the form
(1-1)

2
_ 1 2 4 wz(t)q )

H = 3¢ (p
onical coordinate, p is its associated con-

where g is 2 can
is an arbitr

ntum, w(t)

ary complex function of

jugate mome .
The exact invariants

I are 2 2} (1-2)
T 1l {(q/p) + (pp—epq) !
t satisfies
p being any function of t tha
3 _ 1-3
2.. + wZ(t)p - (l/p) 0 ( )
e P . examples are given and a brief discussion
S - gica
everal clas hose reSUlts reduce to the usual ones
gtems . o
of a guantu® sy L1ato" yhen W iS taken as a positive real
. ci
for the harmonic 0 . kruskal's theory.
his aPPlicatlon of Y
constant, closes




A more detailed consi
nsideration of th
e guantum tim
e—

dependent harmoni i
¢ oscillator and the
problem of a ch
arged

particle in a time-de
pendent electroma i
gnetic field w
as made

by Lewis and Riesenfield.14

Explicitly time-dependent in-
variants, their eigenvalues a i
nd eigenstates i
using operator
(

methods, the connection between eigenstates, and soluti
utions

of the Schrodinger equation were also found As a limit
. miting

case of the exact invariants, they deduced the sudden d
an

adiabatic approximations.

Using a different appr
ltonian systems which include both
\
|

15 .,
oach Symon investigated a

general class of Hami

linear and non-linear classical harmonic oscillators. He

he terms "axact invariant" and

efully defined t
and calcula

also car
ted such invariants for

"adiabatic invariant”
ms of the Hami

1 Mechanics,
t transformations, admitted by a

several for 1tonian.
In Classica knowledge of contact trans-
well as poin
r a full unde

roperties and the quantities

formations, as
rstanding of the re-

necessary f°
g symmetry p
r a number of
e my attention to the problem

system, is

lation between it

rved.

practical reasons I will
. ']

it leaves consé Fo
n this thesis confin

grOuPs

nsformations that leave

however, i
of point tra

of determining th€
in cases 1 ghrough 5 indicated above.

invariant th
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2. CONTINUOUS TRANSFORMATIONS GROUPS

1. The transformation-group of one parameterl

a transformation

Consider
x = £(x,t)

T (2.1)
.E = g(X,t)

£ which the point (x,t) is transferred to the new

by means o
same plane and referred to the same

position (X,t) in the

The inverse transformation, namely the

coordinate system.
g the point (x,t) back to its

operation of transferrin

n (x,t)s ained by solving for x and

original positio is obt
t in terms of x and t, thus
x = £(%,t)
- .
T l: ( |
-1—— _
f erforming the transformations T and T'l in
of P

The result A
.« the identity transformation
. . ; r order: 1s —
Successiony in eithe
x =X (2.3)
=t
transformatlons included in
aggred?

Consider the

the family
(2.4)

€)
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given range (assumin
g that £ and g are
analytic functi
ions

of : ] i
x and t and differentiable with respect to € i
in its

range) These transfor i r | to
. b mations are said
form a fini
ite

Of

e equivalent to a singl

the famil
y ar e transformation of the
It has been assumed that every transformatlon

in

family.
the group contains both the identity and the inverse t

rans-—
i rcumstances, the transformations

Under these ci

formations.
given in Eg- (2.4) are called a group of one parameter.
supposé that €=© is the value of the parameter which

produces the identity transformation in the group-transforma-
tion law given in Bd- (2.4); thuss

£(x,t; 0 =%

g(x,ti o) = ¢

ntity, the transformations

1te51mal gua

h that % differs only infinites-

i1l be suc
ransformation will differ

given in Ed.
This t

dentity transformation, and

imally from Xr

only infinlte51mally grom the i
it is called an infinltesimal transformatlon, Besides, it
can be shownl7 that each one—parameter group has only one
i Let
infinitesimal transfor mation

X = %,t)

X F X+€£( ’ 2.5)

- t+sn(x't)
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J: be the equations of the infinitesimal transformations,

ﬁ where

/

| Boxt) = (Fo)emg (2.6) \r
| (2.7)

nix,t) = () eg

=
" N

and consider the variation of any analytic function F(x,t)

due to the change produced by the infinitesimal transforma-

tion (2.5) on X and t; thus
= F(x,t) - F(x,t)

e R e e

i

|

l

.l.j{

i

i AF (x,t)

I

% = F(x + Ax, t + At) - F(x,t)

[

‘ *

45 = € [ng + nFt]

l‘

% or :
: - — + eUF(x,t) (2.8)
i p(x,E) = F(8) '

J

! where 5 3 (2.9
Il‘

| the infinitesimal transformation,

of
is called the generator
In particular

: since UF represents it.
Ut = n(X:t)
- that F (2.11)
UF = UX'FX + Ut Fe

£ the first order in €.

\/—/
ms Only o

ter

xpetaining
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The function F(X,€) given in Eg. (2.8) may be regarded as
a function of x,t and €; regard x and t as fixed and let the

function be expanded as a Maclaurin series in €. Thus

prdibrey 1 ., .2
F(X,E) = F + FQ € + 3 F €7 + ooy (2.12)
where
F, = [F(x,8)] o = F(x,t)
IF (X, t) _ [P— E(X.T ==
Fo = [""""'Sé"']e=o [Fz 8G,B) + Fg nlx,®)]
_ OF p(x,t) + &= nix,t) = UF(x,t)
and
2 — — .
oo = [RGB = [{g(x,B) a5 +
- = 2
+ n(x,t)agt F(x,8)] -4
= U2F(XIt)’
s
Therefore, Ed- (2,12) pecome p
1
F(E,E) = Fx) s eUF vz €U T 0 (2.13)
4
or, written symbolically, _—
F(x, . sng FOr the infinitesimal trans-
ong
In particular, the equat?
formations are
— x + eg(x,t) (2.15)
x =
t)
tE=t *+ en(Xetle .4 and only terms up to the first
been US
where Bq. (2-10) P% ey
peen retain®ss

order in € haVe
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A function F(x,t) is called invariant if, when X

(2.5) and for all values of €

and t are obtained from Eq.

F(X,t) = F(x,t) (2.16)
Then, for F to be invariant under the transformation (2.15) '
it is necessary and sufficient that
oF oF _ '
3¢~ ° (2.17)

3. The extended group
one-parameter group with transformations

Consider a

given as in Eq. (2.4) and let

daf
|

————

o
rrl\xl

X

i (2.18)

I £ (1) (x,t,%; €)

= — .
gt + ng
Thus in general the

parameter €.

for a fixed value Of the

equations
Y = X t; S) .
7= £00 . (2.19)
-'E = g(X,t; 6)
;—E— _ f(l) (2,t %7 €)
the first—extended group.

form a group -

Similarly, let

\—“——-——"—‘/’— » .
4 conventions

; an
*See notatlons n the case of

1 coefficients.

. wtended 1
asily %% tia
ts are © differen
mor +Tgeser§2§$is and nigher
e than va
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x|
I

ORI PIIEE:

t

(2 - ..
£2) (x,t,%,%;:€)  (2.20)

gt + gx X

also for a fixed value of €. The set of equations

x = £(x,t; €)

T = g(x,t; €)

ST e (2.21)
2o ) (x,t,%,%5€)

n as the second-extended group

which is know

form a group¥,
jitesimal form of these extensions can be

The infini

written as
L n s eg(l)(x,t,:'c) (2.22)
2@ ek 223

retaining terms only of the first order in € and where
] 02
£ (x,£,%) = g T x(Eg~ng) = % Mx (2.24)

and
. ‘l (13 -

!

g(2)(x,t,,-<,§)

. .2
Eee T x(2E ¢ ~ ) * X By 2Nyt

i\

) F X(E, t-‘ 35{nx) (2.25)

- x3(”xx

«tended in the case of

-_—  — e
sily
re ?a d]fferentlal coefficients.

ts @
#* ce rest ul
The , bles an

more than 2 varié




le

Then,

1
X (2.26)

is t P
he generator of the infinitesimal transformati
ion in

the first-extension, and

(2) - (1)
g3 + mo_ + . (2)
X t g0, + E£77 3, (2.27)

is the generator of the infinitesimal transformation of
of the

second extended group-

4. Lie Algebra

re are associated wit

rators which are characterized by thei
r

the h any r-parameter Lie group

r infinitesimal gene
The algebra of the r-dimensional

commutation properties.
ined by the reguirement that the generator
S

vector space is def
y the condition

Um satisf
u .U, - U Un z [u Un] 2.28)
r
= Canr.
Evidently,
where the cr are called the structure constants of the
mn . . .
algebra. Furthermore:s the Jacobl jdentity:
X + X ,X _
[[X ’ Xn], Xr] + [[Xn’xr]’ m] [[ r'}\m]' Xn] =0
m
(2.30)

in terms of the str
(2.31)

a +
P d + cP C m m PD
Cmn Cpr pr P
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In the problems considered here, the generators have th
e

general form
m m m
9, * 3, +
" © % (2.32)

Then,
n.m

m.n _ n.m m,n
- + - m.n
ghgl + kg T nEL Y UE ~ T, +

mn_nm mn __nm mn nm
Einy *n Mg TN YoMy - T )d 4

mn_nm mn-nm on
% Eg, ¥ MG - M Cp *+ L5 - Cngi)ak

(2.33)

Since the extended generators obey the same commutation
neratorsla, it is only necessary to

relations as the g€
elations for the generators.

calculate the commutation T

5. Semi-simple groups
ensor of the second rank*

The symmetrical t
(2.34)

cture constants is useful in providing

constructed from stru

11ing tensor.

\__—._————"—/ ] .
as the metric ©F K1

#7180 known
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' . . 19
a classification of groups. If the group is semi-simple™ ~,

then
(2.35)




ONE-DIMENSIONAL HARMONIC OSCILLATOR

Consider Newton's and Lagrange's equation of motion
for a one-dimensional harmonic oscillator q
sz x+kx=0 (3.1)
where
k = k(t) (3.2)
and let
(1) a; + E(2) 3y (3.3)

U(z) = g3, * nét + &

extended generator of a transformation-group

be the second-
. » a a
flnlte51mal tr

in nsformations of x and
i

obtained by seeking

uation of motion, i.e.
. . the above €d
1nvar1ant

t that leave
s =0 (3.4)

whenever

: ator on S is
Explicitly, the action of this gener
1Cl ’

. =0
[E(Z) + k& + anjs=0

or .2 -3 .0 (3.5)

with

<
|
||
™
ot
ot

(3.6)

19
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i =

20

Since
1r Yoy bge ¥y are functions only of x and t, equati
’ ation

(3.
5) holds for all values of the x, &, % variabl
ables if

by =¥y =3 =¥y =0 (

E . 3 . 7)

quations (3.6) under condition (3.7) are named th

mining equations. The last two of them are easily i
integ-

rated to give.
(3.8)

nix,t) = xT4 + T,

-
g(x,t) = X Ty + xT5 + T,

(3.9)

y of t. 1In order to obtain

where the T's are functions onl
generators, it is necessary to kno
w

explicit forms of the
will be considered here.

k(t). Three special cases

CASE 1. k(t) = w2 _ constant.”
e simple harmonic oscillator

This caseé reduces to th
t simplification of the problem is obtained due to

and a grea

the fact that
k = 0. o
Using Eqs- (3.8) (3.9) ¢ (3.1-1) and the first two determining
equaéionsf solutions to the T's are obtained as
jwt -iwt
T (£) = ae + aye
i -2iwt
wt . a
Tz (t) = 85621 + a6e ;
i (3.1_2)
i ; -2iwt
T, (t) = asiwelet + a6(-1w)e + ag
3
~iwt
iwt e .
i o 4y pecn solved BY R. L.
«This €as€ has alred
1

Anderson (1974) -
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where a ,
17 8¢ <-+0 8g are constants. The generators of th
e

infinitesimal transformations can be written as

8
u = z:ann

n=1

with

u, = ixzeiwtax + % xeiwtat
U, = -ixze—iwtax + % xe-iwtat
Uy = eiwtax
U, = e-iwtax
Ug = ieriwtax + % eZiwtat (3.1-3)
Ug = __ixe-—Ziwtax + % e—2iwtat
U7=£')-8t

xax

e new constants related directly to above a,'s.

=
©®
[}

and the bn ts ar
1t follows fr
ended gene

om these results that the coefficients

s are
of the first-ext rator
g1 = _(ex2 Famx t
1l
2
-l"iwt (3.1_4)




and for

gél)= -(2wx + ix)yet 216t
6
(1) _

67 =0
(1)_ :

Eg = X

the second—extended generators are

+iwt

2x)} e—

3 . o
6{2)= -{+ iwzx2 + 5% (x +

2

E§2)= -wzei;wt

. +2iwt
3x) e—

+ 1 (4w2X +

22

(3.1-5)
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5 :
k() =<90 + at, W, ¢ are constants

W

CASE 2.

Here one obtains

k = & = constant (3.2-1)

and k's higher derivatives vanish. Using Egs. (3.8), (3.9),

(3.2-1) and the first two determining equations, solutions

for the T's are obtained as

Tl(t) = alAi + a,Bi
? ¢ + AiBi .
Tz(t) = aghl *+ agBi + 3y (3.2-2)
T3(t) = aSAiAi + aGBiBi + a,AiBi + ag
T4(t) = a3Ai + a4B1
. 20 . h the ar
where ai, Bi are the Airy functions = Wl gument
14
. -2 3 2 at)- (3.2—3)
z = - 0 / (v, +
HeIICe'
—a1/3 (3.2-4)

z =
2 2 produCtS of these functions. Agailn,
and aj, AiBi, Bi ar€ '
s can be taken 3%

the generator

8
U = Z
n=1

b,Un

With
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u, = V1/z {x“pi 3+ xALd }
u, = /T /2 {x%Bi 9 + xBiat}
Uy = /172 {21 3.}
Uy = \/;r_/—i- {Bi ax}
2
Ug = /2 {xpihi 3, + Bl 3.} : (3.2-5)
. - 2
Ug = w/z {xBiB1 9, *+ Bi at}
U, - /% {xAiBi 9, *+ BiBi 3.}
Ug = X0, .
The first extensions are
p—) .l «2_.
gl(1)= _Ju/% (x2kai - ¥XAL + X Ai}
g e, 02 N
gél)- _/ﬂ/é {xszi - xxBi + X Bil
gil)= Ju7z 1B} (3.2-6)
2 ... 2 o s
. 2 Al + xAiAi}
EE(,l)= -(‘ﬂ'/Z) {X[kAl (AL
2 . 2 o
. ® _ (Bi) ] + xBiBi}
8;6(1): .-(1T/Z) {XEkBl
xAiBi} + X
. ‘Bi - aiBi] + xAiBi
E_;l),: _(1/%) {x[kBIBT
(L. x
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| The second extensions are

giz) = _/i/z {x? (0Ai + kAi) + 3xAi (% + kx)}

g2(2) _ _/i/% {x% (@Bi + kBi) + 3%Bi (x + kx)} e

(2) _ _/n/z {kail
£y /
(3.2-7)

(2) - _/n/z {kBi}

€4 T

] : . 4 kAi) + 3AiAi (x + kx)}
Eéz) = —(u/z) {xpi (GRS

(2) (n/é)'{xBi (oBi + kBi) + 3BiBi (x +kx)}

(@Bi + kBi) * 3aiBi (x + kx) }+

(2) _ _(n/é)'{xAi
+ 2(52 + kx)

Xe

0
n
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CAS k(t)= 2"
E 3. kit)l=p e 7. w, and ¢ are constants.
In this case,
k = ak
(3.3-1)
and
. 2
k = k
The corresponding solutions for the T's become
Tl (t) = alJo + a2Yo
T, (t) = @& 72 + a v2 + a;J.Y
. . (3.3-3)
JJ. * asYoYo + az95% %

T3(t) = dgYo"0

= Y
v, (£) = 337 + ay¥,

where J_, y * are the Bessel and Hankel functions, respec-

ument

tively,2l with the ard
_ 2 ot (3.3-4
Z—-a-woe )
Hence,
. ot
z =W e;i
_ % (3.3-5)
' g of these functions.‘
a 2 2 genote produc
nd 32, J5¥o vy, d
The generators u are
8
U= z bn n
n=1

tions to Bessel's




with
L (% 3.}
1 & o°x
1 2. -
U=——-{XYB -I-xYOt
2 & o°x
1 (30}
U=__._.-J
3 Ja o X
1 (y o}
u, = — Y %
¢ w0
x J o, + 725, }
Us = g {x35945%% o’t
1 (yy v o+ Yzat}
Ug = & Xisto"x o
1 4 + J Y 9.}
U.7 = - {XJoioax £
U8 = xax

of these generators are
s

The first extension 2
- kao + X Jo}

(. L (x*kJ,

€1 =
.2
v 3}

1y L {xzkYo o oxxy o+ XY,
gst= 2

(1) 1 (3.}
3 e

(1) 1o (¥}
€4 T |

2 _ G+ %7 Tt
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(3.3-6)
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€(1)= - -]; 2 . ‘.
¢ o {X[kYO - (YO)Z] * xYoio}
(1) 1
M= - = . o .
7 < {xlka ¥y, - F ¥ 1+ kI ¥ Y+ %
(1) .
Eo = X
° (

an i
d the second extensions are found to be

(2)= 1 - 2 : .
L {x%k (adg + IG) 3xJ (% + kx)}

E -
1 /a
(2)_ 1 2 o . .
£, 7= - 75— {(x°k (0¥, * Y) + 3xy, (¥ + kx)}
£§2)= - _l— {kJo}
Yo
g2 - — Us%o)
Yo
(3.3-8)
5(2)_ 1ixkd  (0J + J) +3J J (% + kx)}
5 = - gt¥*o ° o
£é2)= - l{xkyo(aYo + Yo) + 37 Y (x ¥ kx) }
g;Z)_ - %{ka (oY, + v,) * 37 %, (% * kx)} +
+ 2(x + kx)
In the followind wo casess the equation of motion
scillator is 1nvestigated from two different
y different from

for the harmonic¢ ©
e conceptuall

i)Ol 'l' y e ar

ion$s is

Mining equat
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CASE 4. k an independent variable.

Consider the equation of motion

32x
s £ —5 + kx = 0 (3.4-1)
ot
where x is a function of (t,k). Let
X = x + €& |
E=t+ €n (3.4-2)
k =%k + €L
be infinitesimal transformations generated by
(3.4-3)

U= 3, + na, + (N

ctions of (x,t,k)) that leaves in-

(where £,n and ¢ are fun

variant S; i.e.
s = 0 (3.4-4)

s = 0
nd-order, it is neces-

study is of seco

Since the equation under
) "= first and second extensions of the generators*
sary to use the fif
(3.4-5)
1) 3.
U(l) = U + g( )ax
(3.4-6)
S g g2 oy
(1) (2) 3.
s 4 £a. + £ 32 + & 3
= gax + N9 k

Where22

5 . = ox/0Ky en

\_'/ x = .
= 3x/9ts "VZ terms, then possible,
xtensions.

Y = x o .
*gere, ¥ ﬁlve ’derlvgo:sidered in these e
. nv
Since s does nitrms sed not
e

akkl 3;, v s
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£ (x,t,k,%,%) = E_+ % (B = ng = &n)

* ]
- x(xT + Ct) (3.4-7)

* * e @ . l . ]
A il g+ e+ gt -0 - xn, )

L% (1) .
+ X(E;E - Ct - XC ) (3.4-8)

. %
= Ett + x(ngt - ntt) _ 2XXCXt

.l* .2 _ .2*
- 2xxf + X (€ x 2n_ - % -

* 2.*
- ¥ Tlxx - X;tt - x;t

(3.4-9)
The action of U(z) on S is then
{5(2) + kE * x5 }g=0 0.
Using Eg- (3.4-92) s one obtains * *
v, + iwz + ;¢3 + i2¢4 +.k3¢5 + ka + ixw7
1
’ 0 (3.4-10)

.2
+ X°%

. .*
vg * ¥ XYgq
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with
Py = Egp * KEF XD T kx (£, - 2n)
Yy = 284~ et + 3kxng,
vy = kxgy, - Cot
" - (3 4-11)
Y5 T TNxx
Vg = -2t
Y, = -2C ¢
Yg = "oxx
bg = -27 -

ence of the jndependence of the variables,

As a consedu
s obtained if

i 3.4-10) i
the general golution +to EQ- (
- (3.4-12
tpl = lpz = s e ° = wg - 0’ )
tor is of the form
i t the genera
from which one finds the
: (3.4-13)
U = zl KnUnr
n=
x and
only °f
W functlon
here Kn is any l +1/Et8
2 +ivkt 3+ - X e-
u. = % i x €~ X [E‘
i (3.4-14)
2
+i/Eta
U3 = e~
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U2 = + - <t = e— &
U7=—/-];—3t (3.4-14)
Ug = xax

U9 = —-to, *+ 2k8k.

the same as those obtained

2

generators are
(3.1-3)) with k = w. Their

Eqa

The first eight

in §.H.0. problem (Case 1,
first and second extensions arer then, given in Egs. (3.1-4),
ning generator, Ug' these extensions

(3.1-5). For the remai

read
) (3.4-
gél) _ 15)
5(2) _ Lz (3.4-16)
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CASE 5. k a dependent variable.
Instead of
- 2 ot
X + k(t)x = 0, k(t) = woe '
let the following set of equations be considered:
X+ kx=0 (3.5-1)
(3.5-2)

k -ak=0

where x and k are functions of t, ¢ constant and k is treated

as a dependent variable. Let

X = x + €&
t (3.5-3
t=t+en )
X = k + €&
i ted b
be infinitesimal transformatlons generate y
(3.5-4)

+ Co
U = &9+ nad GOy
quations (3.5-1), (3.5-2),

tem of €
leaving jnvariant the sYS

e whenever % + kx=0 (3.5-5)
U(x + kx) 0
whenever k - ok = 0; (3.5-6)
. - ak) = 0

. aples involved in the problem, it
ia

the var :
pecause ©f oy irst and second extensions of U
. sie
is necessary to "
Such that (1) 3= (3.5-7)
(1)y. + & k

U(l) _u+ 6 X




A iy
I

and

where

or

(2)

g(l)

£ (1)

£ (2)

£(2)
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o @ 4 gy

+ g(l)a .

]
£3x + nat + & k %

Z;,(1')9]:: + £, (3.5-8)

+ X

- xkn, - x“n (3.5-9)

_ gkn - kznk (3.5-10)

(3.5-11)

. k(5. - n..)
£ + X xt
tt

.2 .
-2' + k E - xk™n

2 zn t) - 2X knxk kk kk

; (gxx ¥

o, -3xn_~2kM) + K (B -
'3n + k(gxdz t *
X Txx

(3.5-12)
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The acti (2)
on of U on Egs. (3.5-1), (3.5-2) implies

2
{E( ) 4 xg + KE}y = 0 ,

0.

1
{C( ) - ac}ﬁ=ak = :
‘ (

_
se of Egs. (3.5-10), (3.5-12) in Egs. (3.5~13) gives

b+ %wz + k2w3 + £3w4 = 0
(3.5-14)

¢ Y * xVe = 0

with
¥, = Eee T k (E+208 ) * azk(Ek+kEkk)
+ clotk(2n =8y) F Zakznk}
wz = zgxt - Nt + de(gxk—ntk) - azk(nk+knkk)
+ 3kxTy
¥y = Exx ~ 2n, ~ 20Kk (3.5-15)
Yy = ~Nyx
by = e " o+ ak(EMe T oK
¢6 = ;x - aknx-
¢ the independence of the variables,

nsequence ©

Aa'
gain, as a ©© 5-14) is found if
ro E4S- :

(3.

the general soluti®
(3.5-16)

vy = vy
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from which the generator is*
9
= Q :
T nfl n’n ! (3.5-17)
where qh is any function with argument y = % (at-1nk).
T -
he Un are
1l 2 }
u. = — {ax“k J 93, * xJ 9, + axkJ 3
O X ot ok
! v
: 2
v, = 1 (oxk Yoax + xYOBt + akaOBk}
Yo
1
U = — {J BX}
3 /o o
1
U4 = ——— {Yoax}
Vo (3.5-18)
2
* + akJoo }
Ug = %{akaoJoax +J o'k
* akY<d, }
9. +
Ug = 1iaxkY Yo% © Y k
* + akJ Y 9.}
+ JY ook
U7 = _]:-{anJOYO % t
US = {xax}
U9 = {3t} ’
anctions (of order 0),

o Bessel a

\“"""/ ils are

detd

nd gankel £

J i th
o and Y beind argument
Yespectively: with €h€
(3.5-19)
2 ) .
z = 5 /k cpeir gerivative with respect to k.
eans
and the over-std® m
given in ppendix:




and
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The coefficients of the first extensions are
*
2 .2 s 2 Jo . Jo
£ (1) o _q73/2 {(ox® + kx“)(¥)) + alk - 20K) ()
1 © Yo
2
*
(1) 1/2 ¢ %o }
= a- ].< (* )
53 Y,
4 * *
2 32 B O |
J 2 ., 0 > 0,0
g (1) a2 {xk( g) - a’xkk(45) + 0 (2k-0k){y 31
5 Yo 0o o
o)
.6 (3.5-20)

. 2. ky ¥ 2k-ak) I Y +
g(l)= _a-z {xkJ ¥, ~ a“xkkI Y, ¥ o ( ) I5%,
7

+ %ic;}
gél)= k
(1)_
69 0

*

J - - Jo
. . 0y - (k-ak) xk (¥7)}
_(k—ak)x] (y ) Y

(1) a'l/z {[“xé o
g | (1)
2 (1) — =0
(l) = ; - Cg
63(1)’ c4 8 (3.5-21)
2 J°3°)}
J cak) Kk (y ¥
1) -1 {aﬁ(yg) 2 (k=4 ¥o'o
y 2
6
*
(ko) kb Yot K (k-ok) k).

=
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The result of calculating the coefficients of the second
extensions 1is

(2)_ 1 L1 [(keak)xxk - ax’kK
gl 2

2 Yo ok
(1) ) Jo
- 3gkx(ox + xk) ] (Yo)
P 02 - .2
_ 1 [20k(k-ak) (x¥ + x7) - (ax-kx)xk
o
*
.e Jo '
+ xxkk] ()}
0.
*
J 2 . .2 JO
*
(2) 1 {1 [gz(YO) - a’(kk - k )(Yo)]}
537G ok o
4
.
L e )
(2) 1 L [2 (ak-k) xk + oxkk] (Yg
5T E o 52 (3.5-22)
6 (o]
- > 2 *2)
.. - k ) ] (Y
k) xk *+ ax (kK o
_ [2(ak-k) .,
- . o
k2 Ky (4k-ak) ] (,Cx9)}
b [4xkk2 5 20x o'o
ok

L. - .
1 [2(ak—k)xk + axkk] Jo¥,
e

1
2)_ _ =1
ik + xR T k7)1 Yo%
- [2(ak~
2 2 (kﬁ - kz) + akx(4k—ak)]JOYo
- za
1 [axkk” ¥ .
+ ——— ' . k ] }.
ok 2) , 2Kk (ax + ¥ )
. k”
1 ax (K




=)
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4. LIE ALGEBRA

I 1
n order to obtain the ClaSSificatjon of the Li
le

Al eb i )
g ra involved 1in the above problems, a study of -
com

mut i
ators and metric tensors must be developed.

The set of commutation relations for generators ]
lis i i
ted in Egs. (3.1-3). (3.2-5),(3.3-6), (3.4-14), (3.5-18)

o« I 7

cases 1 and 4 have the same

nd 2.

ar : :
e given in Tables 1l a
U, in each case, and

c
ommutator table between Uy 8
(case 4) commutes with every one as

U2’ e« o o f

. .
he extra generator Ug
situation occurs with U9

is seen in Table 1.
or Cases 2, 3, 5 are

of commutators £

results show that the algebra is

(Case 5) and the set

Written in Table 2.

' .
closed in each Caseé-
ed, using the struc-

tric +£ensor
ed from the
ponding Tab

g are construct

se tables, and their forms

The me

ture constants deducC
le.

w the corre®

Are given belo
FurthermoXre€r in CaseS 1 and 4.
9
get [g] =7 az_z 0 2, b=1, 2 coer & (4D
ab
and jin cases 2r 3 and 5, . _y 8 (
ay = 121 +? ’ 4.2)
_ _1208)° # 00
det [9g 1= 1
ab
) i i that the
i : Cartan s criterion.
Which jndicate ccordind to
imple in each Caseé-
P is seml's

e'
1ght-parameter
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As is noticed inMatrices 1 and 2,the metric tensor
s

ar _3a _ . '
e non-diagonal. Linear combinations of generators can be

taken, which will reduce them to diagonal form and a solu-

tion to an eigenvalue problem provides the standard form of

the generators. Each case is studied separately.

CASES l, 4’* Let
1 . _
Ql=_'§{U1+U2+1(U3 U4)}
1 s _
_ Q, =73 {u, + u, -3 (U3 U}
0, = 3 "1 (U1~ u,) + U+ Uyl
Q, = % (i (U3 - u,) * U, + Uy}
0¢ = Us
0, = 1 (g " Ug)
be al binathn of generators liSted in Eq. (3.1_3).
inear com
ist
The "new" set of generator
-1
(1 2y sinwt % =X coswtdy
Ql = =
2 1 inwt 9
2) coswt dx = = X sinwt dg
- (1 *
Q3 ~ -
4
- Lo,
—~—— Qs w excluded in Cases 4 and 5, in
551 For a direct




42
Q, = x9d
6 X (4.4)
- 1 .
Q; = X cos(2wt)8x + = s:.n(2wt)8t

— . 1
QB ==X 51n(2wt)8x + = cos(2wt)3t

jons of these generators are listed in

The commutation relat
responding to -these

Table 3, and the metric tensor cor

aluated there. Furthermore,

generators is also eV
(12)® _
det [gab] = - —"'-3'-—.— # 0 a'b = 112, co o g 8.
d the standard form of these gener-

Wulfman and Wybourne1 foun
ators, in the case w=1, and the comparison of the present
results with their work sho¥s that Uy, Upr +--s Ug aT€
i + o, H and H,.
Proportional to their E + o E * B’ E v 1 2
Case 2. Let |
0. = * (i/70,) (cosh (Uy20oUa) ™ sink (Uytw,Us) )
1 —
2
0. = +'(i//a;) {5inA(U1ion4) + COSA(U2+wOU3)}
3 = -
4
Qg = ~{ug * Ugt (4-5)
= U
C6 8 A (U ~Ug) + cos 2A (205 - Ug)
= in 2 5
Q7 5 _u.) t sin 21 (2U; - Ug)
0n = _cos 2} (Ug 6
8 erators* given in Eg. (3.2<53),
: F gen
be a jinear comb-‘!-natlon
' e too iong to be pre-
t-forward using

ar .
e Stralgh

*ExpliCi .

s r

Eented here, but j??;.
9s, (3.2-5) and!
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where A i
i
s a function of o and
w *
O.
|

n i e
. er rs 1¢ found tO Ob sa
'lt 10 a
ses 1 a |
nd

4:3.
nd
Table 3 summarizes them

As a mat
ter of
fact, the special form of E
qS. (4-
at the limiti 5)
miting behavior, as «
approach
es

Th i .
ln

r he
m S

th
e next Chapter.

" Cases 3, 5. Let+
g, = ¥ ( ~1/2
1 ﬁwo) {cosu (nU F
2 1 wOU4)
+ sinp (Up % mw U3}
_ T -1/2 . —
Q3 = + (ﬂwo) /2 (ginpy (nU; * @ u,)
1 o 4
_ cosy (Ug % non3)}
Q5 7Ug + U6/ﬂ 6)
0 = Us
Q7 - -sin 21 (TUg ~ U6/ﬂ) + cos 2H (2U7 - U8)
Qg = cos 2H (TUg ~ U6/ﬂ) + sin 2w (205 - Ug)
be
a linear combinatio? of generatorS“ given in Egs. (3.3-6)
I 4

\_______,.-—-—-—"
"_,-ﬂ"'
of * on & and Y, is given in chap-

ter 5 (oone gependenc®
, Case. 2.
s excl?

+generator ~9
ghe ?
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(3-5- i ]
18), with p being a function of @ and w_.*
o

As i
s in the above cases, the commutation relations of

t
hese generators are listed in Table 3.

. 1
As is known™, the local . Lie group of Newton's and

La ;
grange's equation for the oscillator is SL(3,R) for the

ca - :
se k=1, and since the generators On’
e set of commutation relations, it

in all problems con-

sidered here, have the sam

t the local Lie grou
Oy Qg form a compact subgroup

p is still SL(3,R) and

is concluded tha
also that the generators Q-

S0(3).

Ch *phe dep€
dpter 5, Case




Commutator table for generators Um in Cases 1,

4%
Uy U, Uq U, Ug Ue U, Ug Ug
0 0 ~U¢ —U.7-31U8 0 ~-2iU0, -i0, -Uy 0
0 0 --U.7+31U8 -U¢ 21U1 0 10, -0, 0
Ue U7-31U8 0 0 0 -210, -iU4 U, 0
U7+3IUB Ue 0 0 2iU3 0 iv, U, 0
0 -2104 0 -2iU, 0 -410, -2iU 0 0
210, 0 2iU, 0 4iU, 0 2i0 0 0
7 iU, ~-ivu, iU4 -iv, 2iUg -2i0, 0 0 0
8 Uy U, -Uq =0, 0 0 0 0 0
Ug 0 0 0 0 0 0 0 0 0
*The extra column and row for Uy do not count in Case 1.

N 4




Table 2. Commutator table

for generators Um in Cases 2, 3, 5.*

4 5 Ye Y u v
v, 0 0 ~U U +20, 0 U, 0 -U 0
Py 0 0 -U7_UB -UG -Ul 0 -U, -U 0
U3 US U.., + U8 0 0 0 U4 U3 U 0
Uy “7_208 Ue 0 0 -U, 0 0 U 0
US 0 U'.\. 0 U3 0 2U.,--U8 U5 0 0
Ve -u, 0 -U, 0 -2U,+Ug 0 -U¢ 0 0
U.7 0 U2 —U3 0 —U5 U6 0 0 0
US Ul 02 -U3 -U4 c 0 0 0 0
Ug 0 0 0 0 0 0 0 . 0 0

*The extra column and row for U

9 count only in Case 5.

97y

————i




Table 3. Commutator table for generators QOm.
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5. LIMITING BEHAVIOR

The purpose of this chapter is to show that the
blems where k is a function of

generators found in the pro
time reduce to those in which k is constant.

Initially,

Case 1 k = w2
Case 2 k = wg + at
case 3 k = wgeat
case 5 k = ok
ent that in Cases 2, 3 and 5, as o

It is evid
tant.

Wproaches zero, k approaches a cons

in EQ. (3.2-5) involve

these functions and their

functions 18

d
€rivatives The argumen (5-1)
~2/3 (2 + ot)-
Thys - (5-2)
1/3
. .::a 4 oo,
u = "% P and U tends to *t
z goe® iry's functions

ence the asymptOth repP 1
W requir® defined as
th large argument *° y and pi(-u) 3r€
(-u
jons At

The funct
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Ai(-w) = 3 /4 19, 505 W) w5 G

(5-3)

. 2 3/2 2 3/2
Bi(-u) = vu/3 {J_l/3(-3-u /2y - Jl/3(-3-u /2)3,

and since the Bessel functions included have a large argu-

Went and fixed order, the "gankel" type expansion is
applied; i.e.
~3/2 _

J,(u)~ v2/mu cos (u-mv/2 - ©/4) o(|u[77%) (5-4)

The arguﬁent of the Bessel functions 18
3
2w 2.3/2
2 3/2 . 2 + at/w,) .
-3- u = 30 (1 o
ches zero

Using the Binomial expansion, &% a approd
‘ (5-5)
Where (5—6)

o = ng/Ba + o(a)-

ive
Hence, Egs. (5.4) and (5.5) g
| 2 £ + Al)
(2 3/2y . 3/wu3/ cos (g

Jy /3434

ang -
) 3/2 cos(wot + A2)
2u3/2)~ 3/mu
, -1/3‘§
" - g - w/12-
12 Ao
A =g - 511'/ !
1
! + A)
s u3/2) cos(wot (5-7)
i

) (3/ . t + l)r
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where

A = 0o-1/4 = 2w3/3a - /4 + O(a). (5-8)

Two of the basic factors in the generators, in terms of u,

are

i

lﬂ/—ﬁ Ai("ll) = 3" I/TTU/il (Jl/3 + J"'l/3)

YT /-u Bi(-u)

g forms as & goes to zero

and using Egs. (5-7), their limitin

are
(i//ag) cos(w t + A)

—

/ﬁ/z Ai(z) =

. A), (5-9)
A : 7V sin (w_ t +
/’ﬂ'/z Bi(z) = —(l/ wO) (o]
fact that
Where use has been made Of the
1 2 = [V
1 . lim /UJ—’T;: fo)
éig (/a) = gro ©
imj t
Slmllar1Y. it is found tha N
— £ +
/75 Ai(z) = 1" sin (¥ (5-10)
n/z Al
+ A)
(w
v g = 178 cos %o ing
Vu/z Bi(z Ltain the remai
to ©
e
On same Procedur v . Let
® may use the ne generators m
in t
N ; in
xpressions conta:med N g,
=1, %" "

~ lim Um

Uh = oo




by using the

the

1+

re L] [ .
pPresent the limiting behavior of the generators U
m

above expressions, one can obtain

i v w2as
(1/wo){x 51n(wot+A)3x

o]
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Then,

1
- X cos (w jt +A)at}

: 2 1.
_(1/wo){x cos(wot+l)3x + o X s;n(wot+l)3t}

(i//ag){cos(wot+x)ax}

-(i//GZ){sin(wot+A)ax}

{-

1
{3

1 cos
2{x8x + X

xax

following

(Vi) {cos? (T1="0

1 4 sin (2w t+22)3,

—

X sin(2w0t+21)3x

(zwot+2A)3x

4

(5-11)

+ 1 cosz(wot+l)3t}

1 .2
+ = sin ((.l)ot-l'A ) Bt}

1 L3
+ =— 51n(2wot+2l)3t}

(5-12)
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The generators listed in Eq. (3.3-6) in-

r 0) and products

CASE 3.

volve Bessel and Hankel functions (of orde

of these functions and their derivatives with the argument

9iven in Eq. (3.3-4).
z approaches +», so that the

As o goes tO zeroy
sed to find the asymptotic be-

'Hankel" type expansion is U

haviOr of the generators; i.e., Ed- (5-4) and*
-3/2
Y (z) - v/27/Z sin(z ~ nr/2 - 1/4) + 0 (lz| ).
i | (5-13)

Taylor's geries and taking the

Expanding Eq. (3.3-4) iP

linit as a goes to zerO;s

z »w t+0 (5-14)
Where
E = 2wo/a + O(Ot)
; und that
ing Eqs. (5-4) (5-13) s
£ + w)
"o y ) © (5—15)
o->0 /o
vy (2z) 1/2 ginluot ¥ ul s
lim © = (n/wo
“h e /e (5-16)
Sre 1r/4 + ofa)-
_ 2w,/% "
L =g - /4= e
an symbol fgr
ggiogamiven in watson®®
in

\ ) abou :

am guitlis def

Hank xThere are 2 T fol

No. el functions: 199-
7.21, Eqg-. ) P
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Furthermore,

. J (2)
lim o _ 1/2 _,
oo T = -(wo/ﬂ) Sln(wot + M) -

. Y (2)
iiz 3_ = (ﬂwo)l/2 cos (w t + )

o

and so on. The use of EQS. (5-15) .

Procedure provide the remainin
limiting behavior of the generator
aro M

Where

PRI

4 —

o

w

g expressions suc

(5-17) and a similar

h that the

s 1is found to be

8,

X cos(wot+y)at}




b(j)c

Oll i g

giv
e
same generators as t

CASE 5.

th
e
re
sults of the above case
(1-
One 22)* in the gener
to write

= L {v/x szé Bx

\\\\\-—-___——~#’#

*See Appendix.

_ 7 (mu -
+ \O) {cosu (TU; T

+ sinp (U -
(0, + mw, Us)}

+ (m -1/2 ;...
(Tw ) {sinp (70 F &
o

~ cosp (O, + ™

)y + cos 2p(2ﬂ7 -

-sin 70
2u ( U5
) + sin 2y (2f'17

cos 2 T O
po( U5
case 1.

hose fFound in

ht approach is followed he
The usé of

A differe
3 will pe u

+ akaoak

+ xYo £

A vk széax

55

(5-19)

re and

3.5—18) enables

(5-20)
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4775 To'x
U = = 2
g = LR % g, I KGR
Ug = g /K x ¥,¥5? v2p, + akyd,}
o otox + "ot 0%k (

6] = ;"_. /— ' .
= (VR x T Y0t J ¥ * akd Y, 0y}

7
U8 = xax
and
the Bessel and Hankel functions all have the argument |
I
z = % vk (5-21) |
wit |
h the restriction
k = ak (5-22)
A >
S & tendS to zZexo, A goes to 40, k approaCheS zZero;, and
cts have a finite

q their produ

ficients of 3x and at

I /G
o, Y svE, 33/Ve yl//a an
at the coef

beha,
avior, which imply EP

Co .
Werge. However, th€ coefflclents of 9 et
. T This fac

faster than the others pecauseé ¢ their ¢ facto
. .f EgQ- (5-22) 1S |

Teduces the generator® ro thos® in Cas® 3 if B9

Uge
d L ‘
for it implies tP3° (5-23) |
2 ot
= e
k W,

!

m2
0 -
being constant-
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Sults obtained here.

Thi
s work also suggests that for a wide variety of
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t is.

how
generalizable this resul




REFERENCES

R. L.
Appli An3erson and S. M. Davison, J. Math. Anal. and
and B.'G . 48, 301 (1974). See also, Cc. E. Wulfman
Lagrange’ Wybourne, "The Lie Group of Newton's and
JOurnage S Equations for the Harmonic Oscillator."

of Physics A, London (in pPress) . :
Max
Mechgammer. The Conceptual pevelopment of Quantum
b nics. McGraw-Hill Book Company. New York (1966)

apter 3.
ants and the Theory of

P, .
Ehrenfest, wpdiabatic Invarl
33, 500-13 (1917) .

Quanta." phil. Mag. V-

J
ammer, Ibid., P- 99.

(a) g
. M. Burgers
S g
ystems. " phil. Mag., V- 32/
amples of Adiabatic In-
Exale 4 (1929).

riance." Phil. Mag-’ v. 8,1
i :n Simple
(c) Leonard Parker: "Adiabatic Invar;agﬁssi.(r:ls, p
gzrmonic Motion." American journal ©
-7 (1971).
TheorY
i

’

(d) ¢, pevi-civitar g

Adiabati .
ati nts
c Invar1?8-46 (1934).

hYSics’ Vo l3f
.Jammer, loc. cites p- 106- | Clarenton
g. Alfven Cosmical Electr® namics
7
Tess, Oxford (1950). . 0955)
¢ n, Vo 292
+ Helwi z. Naturforsc / i
> in arl nt © th605,7 (1957)
g. M- Kulsrud, "Adlabatl 7. 10 NO - 2 " )
scillator." PHY®- Rev-./’ o a | oxders:
. anC€
A, . : nvarlan
Lenard, "Adlalgat;-glf76 (1959).
4

p
hys. (n.v.) V- &

59




60

11 (

¢ a) C. S Gard " . . .
c1 - . ner, "Adiabatic Invariants of Periodi
assical Systems," V. 115, 791-4 (1959). e

b .
(b) L. Spitzer, Phys. Fluids, V. 1, 253 (1938).

nThe Nonconstancy of the
436-43

égiabzé'o' Vandervoort,
icC ] "
(1961). Invariants," Ann. Phys. (USA) V. 12,

problem,"”

(d) J. E. Littlewood, "1orentz Pendulum : :
261-76 (1959); vadiabatic In-—
26, 131-56 (1964) ;

Ann. Phys. (N.Y.) V. 6,
variance II," Ann. Phys. (N.Y.) V. 26
Adiabatic Invariance 11I," Ann. Phys- (N.Y.) V. 22,
1-12 (1964); and vadiabatic Tnvariance Iv," Ann. Phys.
) (N.y.) v. 29, 13-18 (1964)-
2
* M. K " . of Hamilton and other
ruskal, "Asymptoti€ ggeg;grly B ioaic.” J- Math.

Systems with all Solutio
806-28 (1962)-

Phys' VO é, NO- 4’
* H. R Lew' " f
¢ N is, Jr. class ©
Sical and Q&antu& Time—Dependengsﬁggm?QIGS .
J. Math. Phys. V. 2s NO‘.lli ! a QuantumSYStems with
R. Lewi _ wclassica jitonians."
i Leviss 0 monie-0seillafsSID. 2 (
Phys' Rev. Letters: - = No-. \'7. 18,
an erratum: PhyS- . Letters: gxact
: feld, "AD xac
H. : w. B. RiesSET onic O
ou R. Lewis, Jr-« and ime—DePenqen H rgdent lectro~
antum Theory of the,T :h a rime-DePe g, 1458~
and of a Charged particle lPhY5°' . 10/ No. ©7
?agnetic Fieid." J- ath-
15 3 (1969) . he Lineal and
. . tic
II\§. R. Symon, vThe AdlﬁbaJ. Math.
10nlinear OscillatOr-
1320-30 (1970)- , nuerliche

Lie ———compal
So s. i
New’YorE?uHChelsea P“Ség).lnse " ngO Z
Published Leipzid/ (Lpe vie I Eﬁi-’hers' Bos®
A -/O//" Pu
&
jon=-

13

E. 1, i
. Ince
Pub1icatior’15 Inc- s Ne

7 1
. a v >
braham cohen: supra- ct Natur“ﬂgsfor Pff}'f'sijt?.
er EB¥27 UPZ—pter 5.
claz—¢ 7

gacah Giulio, E¥9:
e also: Wybournel
sons«

John wiley &




20.

21,

22,

23,

2,

25,

61

W. Magn
ghus, F. Oberhettinger, and R. P. Soni

Formul

as

S _and Theorems for Fhe Special Functions of
Springer-Verlag, New York,

%ggﬁggggical Physics.
-+ 3rd enlarged ed. (1966), Chapter 3.

G. N
. W .
Finti Sae7 B Trsstise on the Tieory of desze
a ‘ idge University P . i
ck Ed. (1966), Chapter 3. y Press. First paper
Similarity Methods for

G.
W. Bluman and J. D. Cole.
Springler Verlag, .New York,

Diff \
TT§7§§?ntlal Equations.
I.
Serfé Gradshteyn and I. M. Ryzhik. Table of Integrals,
§E;I_§,and Products. Translated from the Russian by
Jeffpta Technica, Inc. Translation edited by Alan
Obe rey. Academic Press. New vork, (1965). See also:
rhettinger and Soni, loc. cit.. Chapter
t. Methods of Mathematical
York, Vol. I,

plishers. New .
watson, loc- cit.,

R,
; Courant and D. Hilber
sics. Interscience PU
See also:

(1953)
C
Chapteé 71.1apter 7.
ters 3 and 7-

w .
atson, loc. cit., Chap
ds of Theoretical
hba;h. Metho =, New YOﬁg

b
+ M. Morse and H. FéeSs

Phu e+
T%ggigg. McGraw Hill
3), Part I, Chaptei
vol.

H.
llbel‘t, loc. cit..

Watson, loc. cit-: Cchapter 3
5.4.

Ibid'l Chapter 5, No.




APPENDIX

G THE DETERMINING EQUATIONS

AN EXAMPLE OF SOLVIN

t yariable

Case 5. k & dependen

he condition of

Reordering of EQS- (3.5-15) under t

E
4. (3.5-16) gives

CX -aknx = 0
2.2 =
g, - af + ok (ck—nt) - o'k Mg 0
Nyex = O .
EXX - ZnXt - Zakl”lxk -
2 KNy 1)
- y - o king + Kfgk
ngt - Mg + 20k (Exk Nkt
+ 3kXny =
2 + KEix!
k (& kk
Eppt K(ET 20Egx) *°
=0
gy 420K k!
Lx 8 +Fk (2ng = ¥
Inte : on gives
Sration of the aboveé equat®
¢ = akxy + k%7 g (1-1)
n=xy +°9
]
+ 9
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Where
8, Y, 6,¢ and O are functions of (t,k) obeying the

Conditiong

Bt+ak8k“0‘3=‘0

2 -
(t,k)
S 22 2 =0 (1-2)
te T 20k6 , + o'k ekk+ak6k+k6 ' '
2,2 2x 6. - + ok¢,) =0
Gtt + 20Lk6tk + ok Gkk + O kdk 2(¢t o. ¢k
2 2
B + 2k + a“k¢
b, + 20k, + @K Ok k
2 = 0.
The
t
ranSfOrmations 1-3)
T = ot
r K = 1nk
eq
e Eqs. (1-2) to the form
(e Kg) 4+ (e %81 = O
Yop + 2Ypn * Yk ¥ G2
KT o (1-4)
‘ = 0
T, o + 20 + 6 =g e
TT KT KK o
) = 0
§ + 6 - g (97 e
rp + 20k KK e+ 8" 0.
l eK(ZST. K
1 . o
3 B + ¢, + 20k g
h% Q
t
ransformatlonSZG (1-5)
Yy =41 (p-K)
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on Eq. (I-4) give
y-r =
(e B) 0
1 r-¥y. = 0
Y + ——= e Y =
rr 0‘2 (I-6)
ty) o+ L eF Yo =0
rr 2
o
2
- % = 0
drr o ¢r
= 0.
1 _r-¥(26_+ 9)
-;‘ B+9¢ . *a°€ (2%
o t yj_elds
above S€
&uution of the first equation of the (1-7)
r-y
B(r,y) = C.® 4
ple Y-
Where . : of the varid
C, is function ansformed to
are tTr ‘
he remaining equations in (1"6)
~-8)
20, =~ 0O (1
Y =
Yoo * € ‘
p'y) PP
4 = 0
Sop — & %o 1 .20 (6, * 6 =07
Where
(a/Z) £ (1’8)*
1 y) ~ 1n atio® ©
p= 5 (r- jast €9°
h
Ang used *
Eq. (I-7) has beel jeted a®
The nd p is wr :

Solutijon to Y @
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Yy(p,y) =
'Y ClJO + CZYO
: (1-10)

0(p,y) = C
! 3Jo + C4Yo d
Cc, are functions of y and Jo' Yo are Bessel

where
C
and ll Czl C3’ 4
C el functions2! with the argument P
ombinat i
ation of the last two equations in (I-8) gives
hppp * 4Th, ¥ 2ETH T 0, (1-11)
With 0
Ao,yy = slp,y) * 1l i)
nd o ©
. (1-13)
Thug
1-14
I' = 2e2p ( |
The .
28
Solution to Eg- (1-11) reads
2 (1-15) |
A =Cglo * c,9.¥0 ¥ cg¥o 7
. yUsing (I-15) in (I 12)
= r © function of
Ves
lc (1-16)
6 J + CSYO - E o
(0,y)=CeT0 * CsY070
Int (1—8) 1eads to
ratd i pation of
ion of the cnird €9 .
Co¥Y y') + 51(
o P '+C7J0Yé+8oo
’ f nctlon
Wher ' s yes f thes®€
o derivatl and the
and Y. e the ey
I‘Qspe O YO ar ) functlon
°t to their arguments, el
tq > -
and Y,

T
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Goin
g back to
the origin
al variables
(t k), the

Solut.
ions to Eq. (I-2)
-2) read

B =cCk
O
Y = ClJo + C2Yo
6 = c,J_ + Cy¥, ' (I-18)
§ = c a2 + Cy9Y, * csyg - i,
Y + C8YOY(')} + Cgr

¢ =
x {CGJoJé + C79
Whe
re th
e a
rgument of Jgv Y, and theif derivatives is
(1-19)

_ 2
Z = _a_ /]_(-
ang
y=1 (1-20)
for . 5 (ot - 1nk)
hOSe Cn's
T
hen, Eq. (1-1) pecomé )
- 2 kY
¢t = Qlakao + Qzakao + Q5°‘kJo + 83770
+ Q7akJoYo
2 2 ¥ Q J Y + 99
n = leJo + QZXYO + 5JO + QGYO 7“0 0
* *
! o oxKY Y
* * kJ (o) o
£ Qlaxsz N QzaxzkYo 4 agoxkJo™e
© . (1—21)
* + Sg®!
Q,Y 8
+ Q3Jo + 470

+ Q
706kaOYO
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* *
o k; i.e.

where J
Y ]
o Yo are the derivatives with respect t
1 . |
o J
e o (1-22)

and the o °
Qn s have been relabele

*
J

4 to agree with EQg. (3.5-17) .

From Eq. (I-2
1), the generators U, in Eq. (3.5-18) are im-
actor O

nvergence of gene

which appears in
rators

media
tely obtained. The extra f

Som
e of X
them, is chosen for a proper co

When
o
approaches zero (see€ chapter 5).




—— e e
e
T Ear e =

Bernal F > José Ricargo

Qe Group of point transformations of time depen-
t20.7 dent harmonjc oscillators, cStockton, 1976.
Du7 111, 674, 28¢p,
! BS1

Thesis (M.s,) . University of tne Pacific,
; 1976.
! Bibliography: £.59-61.
. Thesig ..

----- + Anothey copy.
1 .Mathematical pPhysics,

2.Lie grours, 3.Differential
€quationg, h.Stockton, Calirf, University of the Pecific
- ssertations. I.Title.




	Group of point transformations of time dependent harmonic oscillators
	Recommended Citation

	Bernal F., Jose 1976 Title pages and Acknowledgements
	Bernal F., Jose 1976 TOC
	Bernal F., Jose 1976 Introduction
	Bernal F., Jose 1976 Notations and Conventions
	Bernal F., Jose 1976 Chapter 1
	Bernal F., Jose 1976 Chapter 2
	Bernal F., Jose 1976 Chapter 3
	Bernal F., Jose 1976 Chapter 4
	Bernal F., Jose 1976 Chapter 5
	Bernal F., Jose 1976 Conclusion
	Bernal F., Jose 1976 References
	Bernal F., Jose 1976 Appendix
	Bernal F., Jose 1976 Back page

