10 research outputs found

    Electro-Quasistatic Analysis of an Electrostatic Induction Micromotor Using the Cell Method

    Get PDF
    An electro-quasistatic analysis of an induction micromotor has been realized by using the Cell Method. We employed the direct Finite Formulation (FF) of the electromagnetic laws, hence, avoiding a further discretization. The Cell Method (CM) is used for solving the field equations at the entire domain (2D space) of the micromotor. We have reformulated the field laws in a direct FF and analyzed physical quantities to make explicit the relationship between magnitudes and laws. We applied a primal-dual barycentric discretization of the 2D space. The electric potential has been calculated on each node of the primal mesh using CM. For verification purpose, an analytical electric potential equation is introduced as reference. In frequency domain, results demonstrate the error in calculating potential quantity is neglected (<3‰). In time domain, the potential value in transient state tends to the steady state value

    Characterization of Partial Discharges in Dielectric Oils Using High-Resolution CMOS Image Sensor and Convolutional Neural Networks

    No full text
    In this work, an exhaustive analysis of the partial discharges that originate in the bubbles present in dielectric mineral oils is carried out. To achieve this, a low-cost, high-resolution CMOS image sensor is used. Partial discharge measurements using that image sensor are validated by a standard electrical detection system that uses a discharge capacitor. In order to accurately identify the images corresponding to partial discharges, a convolutional neural network is trained using a large set of images captured by the image sensor. An image classification model is also developed using deep learning with a convolutional network based on a TensorFlow and Keras model. The classification results of the experiments show that the accuracy achieved by our model is around 95% on the validation set and 82% on the test set. As a result of this work, a non-destructive diagnosis method has been developed that is based on the use of an image sensor and the design of a convolutional neural network. This approach allows us to obtain information about the state of mineral oils before breakdown occurs, providing a valuable tool for the evaluation and maintenance of these dielectric oils

    Effective Electrical Properties and Fault Diagnosis of Insulating Oil Using the 2D Cell Method and NSGA-II Genetic Algorithm

    No full text
    In this paper, an experimental analysis of the quality of electrical insulating oils is performed using a combination of dielectric loss and capacitance measurement tests. The transformer oil corresponds to a fresh oil sample. The paper follows the ASTM D 924-15 standard (standard test method for dissipation factor and relative permittivity of electrical insulating liquids). Effective electrical parameters, including the tan δ of the oil, were obtained in this non-destructive test. Subsequently, a numerical method is proposed to accurately determine the effective electrical resistivity, σ, and effective electrical permittivity, ε, of an insulating mineral oil from the data obtained in the experimental analysis. These two parameters are not obtained in the ASTM standard. We used the cell method and the multi-objective non-dominated sorting in genetic algorithm II (NSGA-II) for this purpose. In this paper, a new numerical tool to accurately obtain the effective electrical parameters of transformer insulating oils is therefore provided for fault detection and diagnosis. The results show improved accuracy compared to the existing analytical equations. In addition, as the experimental data are collected in a high-voltage domain, wireless sensors are used to measure, transmit, and monitor the electrical and thermal quantities

    New Constitutive Matrix in the 3D Cell Method to Obtain a Lorentz Electric Field in a Magnetic Brake

    No full text
    In this work, we have obtained a new constitutive matrix to calculate the induced Lorentz electric current of in a conductive disk in movement within a magnetic field using the cell method in 3D. This disk and a permanent magnet act as a magnetic brake. The results obtained are compared with those obtained with the finite element method (FEM) using the computer applications Getdp and femm. The error observed is less than 0.1173%. Likewise, a second verification has been made in the laboratory using Hall sensors to measure the magnetic field in the proximity of the magnetic brake

    Transient thermal regime trough the constitutive matrix applied to asynchronous electrical machine using the cell method

    No full text
    In this paper, a new constitutive matrix for thermal conduction in transient thermal regime is developed and tested. We use cell method as a numerical method that is included in finite formulation methodology. The constitutive matrix defines through the cell method the behavior of solids when they are under a thermal potential. We have demonstrated that this matrix is equivalent to the electrical conduction constitutive matrix in steady state. We have applied this constitutive matrix to thermal analysis of asynchronous electric machines in transient regime. This constitutive matrix has been validated with comparisons based on finite element method. In finite formulation, the physical laws governing the electromagnetic fields and the physical thermal phenomena are expressed in integral formulation. The final algebraic equation system is tailored directly without discretizing of the differential equations. This is an important advantage because we omit a complex differential formulation and the discretization of the respective equations

    Characterization of Dielectric Oil with a Low-Cost CMOS Imaging Sensor and a New Electric Permittivity Matrix Using the 3D Cell Method

    No full text
    In this paper, a new method for characterizing the dielectric breakdown voltage of dielectric oils is presented, based on the IEC 60156 international standard. In this standard, the effective value of the dielectric breakdown voltage is obtained, but information is not provided on the distribution of Kelvin forces an instant before the dynamic behavior of the arc begins or the state of the gases that are produced an instant after the moment of appearance of the electric arc in the oil. In this paper, the behavior of the oil before and after the appearance of the electric arc is characterized by combining a low-cost CMOS imaging sensor and a new matrix of electrical permittivity associated with the dielectric oil, using the 3D cell method. In this way, we also predict the electric field before and after the electric rupture. The error compared to the finite element method is less than 0.36%. In addition, a new method is proposed to measure the kinematic viscosity of dielectric oils. Using a low-cost imaging sensor, the distribution of bubbles is measured, together with their diameters and their rates of ascent after the electric arc occurs. This method is verified using ASTM standards and data provided by the oil manufacturer. The results of these tests can be used to prevent incipient failures and evaluate preventive maintenance processes such as transformer oil replacement or recovery

    Thermal constitutive matrix applied to asynchronous electrical machine using the cell method

    No full text
    This work demonstrates the equivalence of two constitutive equations. One is used in Fourier’s law of the heat conduction equation, the other in electric conduction equation; both are based on the numerical Cell Method, using the Finite Formulation (FF-CM). A 3-D pure heat conduction model is proposed. The temperatures are in steady state and there are no internal heat sources. The obtained results are compared with an equivalent model developed using the Finite Elements Method (FEM). The particular case of 2-D was also studied. The errors produced are not significant at less than 0.2%. The number of nodes is the number of the unknowns and equations to resolve. There is no significant gain in precision with increasing density of the mesh

    Thermal Analysis of a Magnetic Brake Using Infrared Techniques and 3D Cell Method with a New Convective Constitutive Matrix

    No full text
    In this work we analyse the temperature distribution in a conductor disk in transitory regime. The disk is in motion in a stationary magnetic field generated by a permanent magnet and so, the electric currents induced inside it generate heat. The system acts as a magnetic brake and is analysed using infrared sensor techniques. In addition, for the simulation and analysis of the magnetic brake, a new thermal convective matrix for the 3D Cell Method (CM) is proposed. The results of the simulation have been verified by comparing the numerical results with those obtained by the Finite Element Method (FEM) and with experimental data obtained by infrared technology. The difference between the experimental results obtained by infrared sensors and those obtained in the simulations is less than 0.0459%
    corecore