3 research outputs found

    Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation

    Get PDF
    During wound healing, skin function is restored by the action of several cell types that undergo differentiation, migration, proliferation and/or apoptosis. These dynamics are tightly regulated by the evolution of the extra cellular matrix (ECM) contents along the process. Pharmacologically active flavonoids have shown to exhibit useful physiological properties interesting in pathological states. Among them, oleanolic acid (OA), a pentacyclic triterpene, shows promising properties over wound healing, as increased cell migration in vitro and improved wound resolution in vivo. In this paper, we pursued to disclose the molecular mechanisms underlying those effects, by using an in vitro scratch assay in two epithelial cell lines of different linage: non-malignant mink lung epithelial cells, Mv1Lu; and human breast cancer cells, MDA-MB-231. In every case, we observed that OA clearly enhanced cell migration for in vitro scratch closure. This correlated with the stimulation of molecular pathways related to mitogen-activated protein (MAP) kinases, as ERK1,2 and Jun N-terminal kinase (JNK) 1,2 activation and c-Jun phosphorylation. Moreover, MDA-MB-231 cells treated with OA displayed an altered gene expression profile affecting transcription factor genes (c-JUN) as well as proteins involved in migration and ECM dynamics (PAI1), in line with the development of an epithelial to mesenchymal transition (EMT) status. Strikingly, upon OA treatment, we observed changes in the epidermal growth factor receptor (EGFR) subcellular localization, while interfering with its signalling completely prevented migration effects. This data provides a physiological framework supporting the notion that lipophilic plant extracts used in traditional medicine, might modulate wound healing processes in vivo through its OA contents. The molecular implications of these observations are discussed

    Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19 : a meta-analysis

    No full text
    IMPORTANCE Clinical trials assessing the efficacy of IL-6 antagonists in patients hospitalized for COVID-19 have variously reported benefit, no effect, and harm. OBJECTIVE To estimate the association between administration of IL-6 antagonists compared with usual care or placebo and 28-day all-cause mortality and other outcomes. DATA SOURCES Trials were identified through systematic searches of electronic databases between October 2020 and January 2021. Searches were not restricted by trial status or language. Additional trials were identified through contact with experts. STUDY SELECTION Eligible trials randomly assigned patients hospitalized for COVID-19 to a group in whom IL-6 antagonists were administered and to a group in whom neither IL-6 antagonists nor any other immunomodulators except corticosteroids were administered. Among 72 potentially eligible trials, 27 (37.5%) met study selection criteria. DATA EXTRACTION AND SYNTHESIS In this prospectivemeta-analysis, risk of biaswas assessed using the Cochrane Risk of Bias Assessment Tool. Inconsistency among trial results was assessed using the I-2 statistic. The primary analysis was an inverse variance-weighted fixed-effects meta-analysis of odds ratios (ORs) for 28-day all-cause mortality. MAIN OUTCOMES AND MEASURES The primary outcome measurewas all-cause mortality at 28 days after randomization. There were 9 secondary outcomes including progression to invasive mechanical ventilation or death and risk of secondary infection by 28 days. RESULTS A total of 10 930 patients (median age, 61 years [range of medians, 52-68 years]; 3560 [33%] were women) participating in 27 trials were included. By 28 days, there were 1407 deaths among 6449 patients randomized to IL-6 antagonists and 1158 deaths among 4481 patients randomized to usual care or placebo (summary OR, 0.86 [95% CI, 0.79-0.95]; P =.003 based on a fixed-effects meta-analysis). This corresponds to an absolute mortality risk of 22% for IL-6 antagonists compared with an assumed mortality risk of 25% for usual care or placebo. The corresponding summary ORs were 0.83 (95% CI, 0.74-0.92; P <.001) for tocilizumab and 1.08 (95% CI, 0.86-1.36; P =.52) for sarilumab. The summary ORs for the association with mortality compared with usual care or placebo in those receiving corticosteroids were 0.77 (95% CI, 0.68-0.87) for tocilizumab and 0.92 (95% CI, 0.61-1.38) for sarilumab. The ORs for the association with progression to invasive mechanical ventilation or death, compared with usual care or placebo, were 0.77 (95% CI, 0.70-0.85) for all IL-6 antagonists, 0.74 (95% CI, 0.66-0.82) for tocilizumab, and 1.00 (95% CI, 0.74-1.34) for sarilumab. Secondary infections by 28 days occurred in 21.9% of patients treated with IL-6 antagonists vs 17.6% of patients treated with usual care or placebo (OR accounting for trial sample sizes, 0.99; 95% CI, 0.85-1.16). CONCLUSIONS AND RELEVANCE In this prospectivemeta-analysis of clinical trials of patients hospitalized for COVID-19, administration of IL-6 antagonists, compared with usual care or placebo, was associated with lower 28-day all-cause mortality
    corecore