6 research outputs found

    On the feasibility of a channel-dependent scheduling for the SC-FDMA in 3GPP-LTE (mobile environment) based on a prioritized-bifacet Hungarian method

    Get PDF
    We propose a methodology based on the prioritization and opportunistic reuse of the optimization algorithm known as Hungarian method for the feasible implementation of a channel-dependent scheduler in the long-term evolution uplink (single carrier frequency division multiple access system). This proposal aims to offer a solution to the third generation system’s constraint of allocating only adjacent subcarriers, by providing an optimal resource allotment under a fairness scheme. A multiuser mobile environment following the third generation partnership project TS 45.005v9.3.0/25.943v9.0.0 was also implemented for evaluating the scheduler’s performance. From the results, it was possible to examine the channel frequency response for all users (four user equipments) along the whole bandwidth, to visualize the dynamic resource allocation for each of the 10,000 channel realizations considered, to generate the statistical distribution and cumulative distribution functions of the obtained global costs, as well as to evaluate the system’s performance once the proposed algorithm was embedded. Comparing and emphasizing the benefits of utilizing the proposed dynamic allotment instead of the classic static-scheduling and other existent methods.Peer ReviewedPostprint (published version

    An opportunistic cognitive radio communication through the exploitation of the small-scale fading mechanisms of the LTE mobile channel

    Get PDF
    In recent years, the cognitive radio technology has attracted the attention of all the players in the telecommunication field (i.e., researchers, industry, service providers, and regulatory agencies) as a way of facing the spectrum scarcity. In this regard, and after having reviewed the vast activity linked to this concept it is quite easy to realize that the spectrum sensing task turns out to be the keystone of this technology. However, nowadays it is still unclear which is (are) going to be the globally recommended technique(s) for carrying out this procedure. So, and aiming at finding an alternative to the technical impediments behind the spectrum sensing task, this research work proposes that the advanced knowledge that is already being collected at the modern primary networks be used in benefit of the cognitive radios. Here, the 3GPP LTE network has been adopted as the primary system providing the information that the cognitive radio transceiver will be using for co-transmitting opportunistically (i.e., at specific moments) through the licensed radio resources, being the secondary access based on a novel model which proposes to overlay the secondary transmission whenever extreme channel conditions be found in the radio link of a particular primary user.Peer reviewe
    corecore