22 research outputs found

    Antitumor Effect of Malaria Parasite Infection in a Murine Lewis Lung Cancer Model through Induction of Innate and Adaptive Immunity

    Get PDF
    BACKGROUND: Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+) T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. CONCLUSIONS/SIGNIFICANCE: Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer immune-based therapy

    Transduction of SIV-Specific TCR Genes into Rhesus Macaque CD8+ T Cells Conveys the Ability to Suppress SIV Replication

    Get PDF
    The SIV/rhesus macaque model for HIV/AIDS is a powerful system for examining the contribution of T cells in the control of AIDS viruses. To better our understanding of CD8(+) T-cell control of SIV replication in CD4(+) T cells, we asked whether TCRs isolated from rhesus macaque CD8(+) T-cell clones that exhibited varying abilities to suppress SIV replication could convey their suppressive properties to CD8(+) T cells obtained from an uninfected/unvaccinated animal.We transferred SIV-specific TCR genes isolated from rhesus macaque CD8(+) T-cell clones with varying abilities to suppress SIV replication in vitro into CD8(+) T cells obtained from an uninfected animal by retroviral transduction. After sorting and expansion, transduced CD8(+) T-cell lines were obtained that specifically bound their cognate SIV tetramer. These cell lines displayed appropriate effector function and specificity, expressing intracellular IFNγ upon peptide stimulation. Importantly, the SIV suppression properties of the transduced cell lines mirrored those of the original TCR donor clones: cell lines expressing TCRs transferred from highly suppressive clones effectively reduced wild-type SIV replication, while expression of a non-suppressing TCR failed to reduce the spread of virus. However, all TCRs were able to suppress the replication of an SIV mutant that did not downregulate MHC-I, recapitulating the properties of their donor clones.Our results show that antigen-specific SIV suppression can be transferred between allogenic T cells simply by TCR gene transfer. This advance provides a platform for examining the contributions of TCRs versus the intrinsic effector characteristics of T-cell clones in virus suppression. Additionally, this approach can be applied to develop non-human primate models to evaluate adoptive T-cell transfer therapy for AIDS and other diseases

    Human telomerase reverse transcriptase-transduced human cytotoxic T cells suppress the growth of human melanoma in immunodeficient mice.

    No full text
    Immunotherapy of melanoma by adoptive transfer of tumor-reactive T lymphocytes aims at increasing the number of activated effectors at the tumor site that can mediate tumor regression. The limited life span of human T lymphocytes, however, hampers obtaining sufficient cells for adoptive transfer therapy. We have shown previously that the life span of human T cells can be greatly extended by transduction with the human telomerase reverse transcriptase (hTERT) gene, without altering antigen specificity or effector function. We developed a murine model to evaluate the efficacy of hTERT-transduced human CTLs with antitumor reactivity to eradicate autologous tumor cells in vivo. We transplanted the human melanoma cell line melAKR or melAKR-Flu, transduced with a retrovirus encoding the influenza virus/HLA-A2 epitope, in RAG-2(-/-) IL-2Rgamma (-/-) double knockout mice. Adoptive transfer of the hTERT-transduced influenza virus-specific CTL clone INFA24 or clone INFA13 inhibited the growth of melAKR-Flu tumors in vivo and not of the parental melAKR melanoma cells. Furthermore, the hTERT-transduced CTL clone INFA13 inhibited tumor growth to the same extent in vivo as the untransduced CTL clone, as determined by in vivo imaging of luciferase gene-transduced melAKR-Flu tumors, indicating that hTERT did not affect the in vivo function of CTL. These results demonstrate that hTERT-transduced human CTLs are capable of mediating antitumor activity in vivo in an antigen-specific manner. hTERT-transduced MART-1-specific CTL clones AKR4D8 and AKR103 inhibited the growth of syngeneic melAKR tumors in vivo. Strikingly, melAKR-Flu cells were equally killed by the MART-1-specific CTL clones and influenza virus-specific CTL clones in vitro, but only influenza-specific CTLs were able to mediate tumor regression in vivo. The influenza-specific CTL clones were found to produce higher levels of IFNgamma on tumor cell recognition than the MART-1-specific CTL clones, which may result from the higher functional avidity of the influenza virus-specific CTL clones. Also, melAKR-Flu tumors were growing faster than melAKR tumors, which may have surpassed the relatively modest antitumor effect of the MART-1-specific CTL, as compared with the influenza virus-specific CTL. Taken together, the adoptive transfer model described here shows that hTERT-transduced T cells are functional in vivo, and allows us to evaluate the balance between functional activity of the CTL and tumor growth rate in vivo, which determines the efficacy of CTLs to eradicate tumors in adoptive transfer therapy

    Methods to assess tropical rain forest canopy structure: an overview

    No full text
    Forest canopy structure (sensu latu) is the combination of forest texture (the qualitative and quantitative composition of the vegetation as to different morphological elements), and forest structure (sensu strictu, the spatial arrangement of these elements). Scale is an aspect of major importance. At a regional scale forest types can be distinguished, like broadleaf or coniferous forest. At local scale, distribution and size and shape of tree crowns, and the spatial distribution of leaves and branches within tree crowns determine to a large extent the canopy structure. Which components and sub-components are used, and also the scale at which their spatial arrangements are studied, is of great importance for the possible outcome of the analysis of canopy structure. This is specially the case when canopy structure is needed as a correlate to ecological questions, e.g., on habitat specificity of animals, or epiphytes. Methods available for describing and analysing canopy structure are discussed. At large scale levels remote sensing data are used to describe differences in structure. High-resolution radar images are used to describe canopy structure in detail and over large areas. Repeated measurements over time can be used for monitoring purposes. Ways to measure the three dimensional structure of (components within) individual trees in detail are being developed, and are coupled to physiological models. Currently, use of such methods is only feasible for small plants. Forest tomography (where the vegetation occupation and empty spaces are determined in horizontal and vertical slices of the forest) is proposed as a way to describe vertical and horizontal structure. Vegetation cover and occupation is analysed above grid points in a forest. As an example the vertical structure of a Cameroonian forest is described at several levels of detail. The research question asked should govern completely the choice of the parameters and the methods used for the description of forest canopy structure
    corecore