26 research outputs found

    Compensation comparison method for assessment of retinal straylight,”

    Get PDF
    PURPOSE. Presently, no instrument or method exists that is generally accepted for routine clinical assessment of (functional) retinal straylight. Yet retinal straylight is the cause of major patient complaints, such as hindrance from glare and loss of contrast. It results from disturbances in the optical media that increase light-scattering over angles of 1°to 90°. Its assessment would help to decide whether to perform surgery for (early) cataract and would help in the evaluation of corneal or vitreal turbidity. METHODS. The psychophysical technique of the "direct compensation" method was adapted to make it suitable for routine clinical assessment. In the new approach, called "compensation comparison, " the central test field is subdivided into two half fields: one with and one without counterphase compensation light. The subject's task is a forced-choice comparison between the two half fields, to decide which half flickers more strongly. A theoretical form for the respective psychometric function was defined and experimentally verified in a laboratory experiment involving seven subjects, with and without artificially increased light scattering. The method was applied in a separate multicenter study. Its reliability was additionally tested with a commercial implement (C-Quant; Oculus Optikgeräte, Wetzlar-Dutenhofen, Germany). RESULTS. A repeated-measures SD of 0.07 log units was achieved, to be compared with differences in the young normal population of 0.4 log units and an increase with healthy aging by 0.5 log units at 80 years and by 1.0 or more log units with (early) cataract or corneal disturbances. Reliability was further found to be high when using the commercial version of the method. CONCLUSIONS. The compensation comparison method for measuring retinal straylight is suited for clinical use to diagnose patients with complaints caused by large angle light scattering in the eye such as early cataract. (Invest Ophthalmol Vis Sci

    Grading of Iris Color with an Extended Photographic Reference Set

    No full text
    PURPOSE: To present a new iris pigmentation classification system based on comparison of iris pigmentation to a set of 24 standard eye photographs, with the aim of gaining on accuracy and on applicability for retinal straylight studies. METHODS: A reference set of 24 eye photographs was established by ranking the photographs from least (number 1) to most (number 24) iris pigmentation. Reproducibility was tested by grading a sample of 67 eye photographs with this reference set. RESULTS: The overall variation between observers was 1.46 on a scale of 0 to 25. CONCLUSION: The new method is promising to be more accurate than existing iris color classification systems in clinical situations where objective colorimetry-based systems are not available. The method may be useful to assess iris translucency and fundus reflectance as sources of variation in retinal straylight

    Derivation of Lenticular Transmittance from Fluorophotometry

    No full text
    PURPOSE. To derive transmittance spectra for the human lens using the ratio between posterior and anterior autofluorescence of the lens as measured by fluorophotometry. METHODS. Transmittance spectra of the lens can be described with a one-parameter model to a high degree of accuracy. The parameter m of this model defines the differences between lens transmittance spectra of individuals. In fluorophotometry literature another parameter related to lens transmittance, T, has been defined as the square root of the ratio between posterior and anterior lenticular autofluorescence. T can be predicted from parameter m, given the spectra of the excitation light, of the fluorescence emitted by the lens and of the detecting device are known, and assuming that the anterior and posterior fluorescence efficiencies of the lens are equal. When this relation is inverted, parameter m can be derived from T, giving the complete transmittance spectrum on the basis of T. RESULTS. A transformation curve was calculated to determine T from m and vice versa. The light transmittance spectrum of the lens was calculated as a function of T. The validity of this approach was evaluated using an independent method for assessment of lenticular transmittance. This method consisted of making color slitlamp slides, grading the observed color of these slides with the LOCS III NC grading system, and transforming these grades into the model parameter m using published transformation curves. CONCLUSIONS. The total transmittance spectrum can be calculated reliably from a fluorophotometric scan of the human lens. (Invest Ophthalmol Vis Sci. 2002;43:3003-3007

    Lightweight, wireless LED implant for chronic manipulation in vivo of spontaneous activity in neonatal mice

    No full text
    Background: Long-term manipulation of activity in the neonatal rodent brain can help us understand healthy development, but also involves a set of challenges unique to the neonatal animal. As pups are small, cannot be separated from their mother for long periods of time, and must be housed in a nest, many traditional techniques are unusable during the first two postnatal weeks. New method: Here, we describe the use of magnetic resonance induction to allow wireless and chronic optogenetic manipulation of spontaneous activity in mouse pups during the second postnatal week. Results: Pups were implanted with a lightweight receiver coupled to an LED and successfully returned to the homecage. A transmitter coil surrounding the homecage drove the implanted LED and was regulated by a microcontroller to allow flexible, precisely-timed and wireless control over neuronal manipulation. In vivo patch-clamp recordings verified that activation of the LED triggered bursts of action potentials in layer 2/3 neurons that expressed channelrhodopsin-2 in the visual cortex without directly affecting neighboring, non-expressing neurons. The implants are stable and functional for at least 10 days and do not have an impact on the weight gain of pups. Implanted pups’ behavior is mildly affected only briefly after surgery, while maternal behavior of dams remains unaffected. Comparison with existing method(s): In contrast to most other methods for wireless optogenetic stimulation, the small size and low weight of the receiver allow complete implantation in animals that are as small as a newborn mouse. Conclusions: This method is ideal for investigating the function and development of cortical circuits in small and developing animals. Furthermore, our method is economical and easy to adapt to diverse experimental designs

    Morphometry of Dermal Collagen Orientation by Fourier Analysis Is Superior to Multi-Observer Assessment

    No full text
    In human dermis, collagen bundle architecture appears randomly organized, whereas in pathological conditions, such as scar tissue and connective tissue disorders, collagen bundle architecture is arranged in a more parallel fashion. Histological examination by one or two observers using polarized light is the most common method to determine collagen orientation. The hypothesis on which this study is based is that an objective image analysis technique, Fourier analysis, would improve the reliability (are the measurements reproducible?) and the accuracy (does the method measure what it is supposed to measure?) of collagen orientation assessment, compared with observer ratings. Fourier analysis was applied to 271 images of scar tissue and normal skin that were acquired by confocal laser-scanning microscopy. Observers rated the same areas using polarized light as well as the confocal microscopy images. Computer images consisting of different types of ellipses were generated with a fixed orientation. Observers and Fourier analysis evaluated the images to evaluate accuracy. The inter-observer reliability was acceptable when at least three observers rated polarized light images (r > 0.69), whereas two observers were sufficient for rating confocal microscopy images (r > 0.71). Fourier analysis correlated better with observer ratings of confocal microscopy images (r = 0.69) than with polarized light microscopy images (r = 0.42). Fourier analysis was more accurate than four observers for the evaluation of the 'true' orientation for almost all types of computer-generated images. For the first time it is shown that Fourier image analysis is suitable for the morphometry of dermal collagen orientation and leads to a superior measurement of collagen orientation compared with subjective histological evaluation by several experts. If an evaluation is performed by conventional light microscopy, at least three observers are required to attain an acceptable inter-observer reliability

    In-vitro recording of forward light-scatter by human lens capsules and different types of posterior capsule opacification

    No full text
    The purpose of the present study was to elucidate the effect of posterior capsule opacification (PCO) on the straylight domain of visual function. PCO is heterogeneous with regard to morphology and severity; both aspects contribute to its functional effect. The isolated impact of capsule areas with specific morphology and severity on straylight was studied in-vitro by recording forward light-scatter. Forward light-scatter by four different capsule types, i.c. anterior capsule (AC), clear posterior capsule (PC), fibrotic and regeneratory PCO, was recorded at several visual angles with a goniometer, using different wavelengths. Angular (theta(a)) and wavelength dependencies (lambda(b)) were studied by determining exponents a and b. Recorded straylight values of isolated capsule areas varied between 10 x below to 10 x above the value normal for the human eye, depending on the capsule's condition (clear to opacified). The angular dependence of light scattered by clear PCs was weaker, whereas in the other capsule types it was stronger than in the normal eye. On average, the wavelength dependence of light scattered by different capsule types was similar, but the variation was considerable. At the smallest visual angles, increased angular and decreased wavelength dependence was found, especially in fibrotic and regeneratory PCO. It was concluded that the range of straylight values found in-vitro in lens capsules properly corresponded to that found previously in in-vivo pseudophakics. Surprisingly, the wavelength dependence of PCO indicated that small-particle light-scattering is important in PCO. Refractile effects were more important at small visual angles, as indicated by the combined stronger angular and weaker wavelength dependence. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserve

    Imaging of forward light-scatter by opacified posterior capsules isolated from pseudophakic donor eyes

    No full text
    Posterior capsule opacification (PCO) degrades visual function by reducing visual acuity, but also by increasing intraocular light-scatter. An in vitro model was used to elucidate the effect of PCO-morphology on light-scatter and its functional aspect, as can be assessed with straylight measurement. Forward PCO-scatter by opacified capsular bags was recorded with a goniometer and camera. The camera position mimicked the anatomic position of retinal photoreceptors; the camera recorded the scattered light that the photoreceptors would sense in an in vivo situation. Scattered light was recorded at different wavelengths and scatter angles, which were divided into a near (1° 7°) large-angle domain. Using scattered light, the camera produced grayscale PCO images. The nature of the angular dependence of PCO-scatter was compared with that of scatter in the normal eye, by rescaling PCO images relative to the normal eye's point-spread function. The scattered light images closely followed PCO severity. The angular dependence of PCO-scatter resembled that of scatter in the normal eye, irrespective of severity and PCO type. PCO shows the type of wavelength dependence that is normal for small particles: monotonically decreasing with increasing wavelength. At the near large-angle domain, the angular dependence of PCO scatter resembled the angular dependence of scatter in the normal eye less closely. Surprisingly, PCO scatter and scatter in the normal eye have similar underlying scattering processes. However, data obtained at the near large-angle domain demonstrates that, apart from scatter, PCO may also have a refractile component, which is most pronounced in pearl-type PC
    corecore