2,148 research outputs found

    Centeredness Theory: Understanding and measuring well-being across core life domains

    Get PDF
    Background: Centeredness Theory (CT) is proposed as a new mental health paradigm that focuses on well-being at a systems-level, across the core life domains of the self, the family unit, relationships, community, and work. The current studies aimed to validate the psychometric properties of a new scale that measures CT against existing well-being and mental health measures. Methods: Study 1 included 488 anonymous online respondents (46% females, 28% males, 25% unknown with median age between 31 and 35 years) across 38 countries who completed the CT scale. Study 2 included 49 first-year psychology students (90% females, mean age of 19 years) from Sydney Australia that completed the CT scale and other well-being and mental health questionnaires at baseline and 2-weeks follow-up. Results: Exploratory and confirmatory factor analyses resulted in a refined 60-item CT scale with five domains, each with four sub-domains. The CT scale demonstrated good internal consistency reliability and test-retest reliability, and showed evidence of convergent validity against other well-being measures (e.g., COMPAS-W Wellbeing Scale, SWLS scale, and Ryff's Psychological Well-being scale). Conclusions: The CT scale appears to be a reliable measure of well-being at a systems-level. Future studies need to confirm these findings in larger heterogeneous samples

    Essential self-adjointness for combinatorial Schr\"odinger operators II- Metrically non complete graphs

    Full text link
    We consider weighted graphs, we equip them with a metric structure given by a weighted distance, and we discuss essential self-adjointness for weighted graph Laplacians and Schr\"odinger operators in the metrically non complete case.Comment: Revisited version: Ognjen Milatovic wrote to us that he had discovered a gap in the proof of theorem 4.2 of our paper. As a consequence we propose to make an additional assumption (regularity property of the graph) to this theorem. A new subsection (4.1) is devoted to the study of this property and some details have been changed in the proof of theorem 4.

    Transformation of spin information into large electrical signals via carbon nanotubes

    Get PDF
    Spin electronics (spintronics) exploits the magnetic nature of the electron, and is commercially exploited in the spin valves of disc-drive read heads. There is currently widespread interest in using industrially relevant semiconductors in new types of spintronic devices based on the manipulation of spins injected into a semiconducting channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation such that the magnetoresistive signals are below 1%. We overcome this long standing problem in spintronics by demonstrating large magnetoresistance effects of 61% at 5 K in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 micron gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This improvement arises because the spin lifetime in nanotubes is long due the small spin-orbit coupling of carbon, because the high nanotube Fermi velocity permits the carrier dwell time to not significantly exceed this spin lifetime, because the manganite remains highly spin polarized up to the manganite-nanotube interface, and because the interfacial barrier is of an appropriate height. We support these latter statements regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire adventure in materials selection for some future spintronicsComment: Content highly modified. New title, text, conclusions, figures and references. New author include

    Optimized intermolecular potential for nitriles based on Anisotropic United Atoms model

    Get PDF
    An extension of the Anisotropic United Atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (–C≡N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile

    Inhibition of E2-induced expression of BRCA1 by persistent organochlorines

    Get PDF
    BACKGROUND: Environmental persistent organochlorines (POCs) biomagnify in the food chain, and the chemicals are suspected of being involved in a broad range of human malignancies. It is speculated that some POCs that can interfere with estrogen receptor-mediated responses are involved in the initiation and progression of human breast cancer. The tumor suppressor gene BRCA1 plays a role in cell-cycle control, in DNA repair, and in genomic stability, and it is often downregulated in sporadic mammary cancers. The aim of the present study was to elucidate whether POCs have the potential to alter the expression of BRCA1. METHODS: Using human breast cancer cell lines MCF-7 and MDA-MB-231, the effect on BRCA1 expression of chemicals belonging to different classes of organochlorine chemicals (the pesticide toxaphene, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and three polychlorinated biphenyls [PCB#138, PCB#153 and PCB#180]) was measured by a reporter gene construct carrying 267 bp of the BRCA1 promoter. A twofold concentration range was analyzed in MCF-7, and the results were supported by northern blot analysis of BRCA1 mRNA using the highest concentrations of the chemicals. RESULTS: All three polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin reduced 17β-estradiol (E2)-induced expression as well as basal reporter gene expression in both cell lines, whereas northern blot analysis only revealed a downregulation of E2-induced BRCA1 mRNA expression in MCF-7 cells. Toxaphene, like E2, induced BRCA1 expression in MCF-7. CONCLUSION: The present study shows that some POCs have the capability to alter the expression of the tumor suppressor gene BRCA1 without affecting the cell-cycle control protein p21(Waf/Cip1). Some POCs therefore have the potential to affect breast cancer risk

    Could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach?

    Get PDF
    Background: Recognition of homogeneous subgroups of patients can usefully improve prediction of their outcomes and the targeting of treatment. There are a number of research approaches that have been used to recognise homogeneity in such subgroups and to test their implications. One approach is to use statistical clustering techniques, such as Cluster Analysis or Latent Class Analysis, to detect latent relationships between patient characteristics. Influential patient characteristics can come from diverse domains of health, such as pain, activity limitation, physical impairment, social role participation, psychological factors, biomarkers and imaging. However, such 'whole person' research may result in data-driven subgroups that are complex, difficult to interpret and challenging to recognise clinically. This paper describes a novel approach to applying statistical clustering techniques that may improve the clinical interpretability of derived subgroups and reduce sample size requirements. Methods: This approach involves clustering in two sequential stages. The first stage involves clustering within health domains and therefore requires creating as many clustering models as there are health domains in the available data. This first stage produces scoring patterns within each domain. The second stage involves clustering using the scoring patterns from each health domain (from the first stage) to identify subgroups across all domains. We illustrate this using chest pain data from the baseline presentation of 580 patients. Results: The new two-stage clustering resulted in two subgroups that approximated the classic textbook descriptions of musculoskeletal chest pain and atypical angina chest pain. The traditional single-stage clustering resulted in five clusters that were also clinically recognisable but displayed less distinct differences. Conclusions: In this paper, a new approach to using clustering techniques to identify clinically useful subgroups of patients is suggested. Research designs, statistical methods and outcome metrics suitable for performing that testing are also described. This approach has potential benefits but requires broad testing, in multiple patient samples, to determine its clinical value. The usefulness of the approach is likely to be context-specific, depending on the characteristics of the available data and the research question being asked of it

    Spatially-resolved electronic and vibronic properties of single diamondoid molecules

    Full text link
    Diamondoids are a unique form of carbon nanostructure best described as hydrogen-terminated diamond molecules. Their diamond-cage structures and tetrahedral sp3 hybrid bonding create new possibilities for tuning electronic band gaps, optical properties, thermal transport, and mechanical strength at the nanoscale. The recently-discovered higher diamondoids (each containing more than three diamond cells) have thus generated much excitement in regards to their potential versatility as nanoscale devices. Despite this excitement, however, very little is known about the properties of isolated diamondoids on metal surfaces, a very relevant system for molecular electronics. Here we report the first molecular scale study of individual tetramantane diamondoids on Au(111) using scanning tunneling microscopy and spectroscopy. We find that both the diamondoid electronic structure and electron-vibrational coupling exhibit unique spatial distributions characterized by pronounced line nodes across the molecular surfaces. Ab-initio pseudopotential density functional calculations reveal that the observed dominant electronic and vibronic properties of diamondoids are determined by surface hydrogen terminations, a feature having important implications for designing diamondoid-based molecular devices.Comment: 16 pages, 4 figures. to appear in Nature Material

    Direct observation of mammalian cell growth and size regulation

    Get PDF
    We introduce a microfluidic system for simultaneously measuring single cell mass and cell cycle progression over multiple generations. We use this system to obtain over 1,000 hours of growth data from mouse lymphoblast and pro-B-cell lymphoid cell lines. Cell lineage analysis revealed a decrease in the growth rate variability at the G1/S phase transition, which suggests the presence of a growth rate threshold for maintaining size homeostasis

    AhR transcriptional activity in serum of Inuits across Greenlandic districts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human exposure to lipophilic persistent organic pollutants (POPs) including polychlorinated dibenzo-<it>p</it>-dioxins/furans (PCDDs/PCDFs), polychlorinated biphenyls (PCBs) and organochlorine pesticide is ubiquitous. The individual is exposed to a complex mixture of POPs being life-long beginning during critical developmental windows. Exposure to POPs elicits a number of species- and tissue-specific toxic responses, many of which involve the aryl hydrocarbon receptor (AhR). The aim of this study was to compare the actual level of integrated AhR transcriptional activity in the lipophilic serum fraction containing the actual POP mixture among Inuits from different districts in Greenland, and to evaluate whether the AhR transactivity is correlated to the bio-accumulated POPs and/or lifestyle factors.</p> <p>Methods</p> <p>The study included 357 serum samples from the Greenlandic districts: Nuuk and Sisimiut (South West Coast), Qaanaaq (North Coast) and Tasiilaq (East Coast). The bio-accumulated serum POPs were extracted by ethanol: hexane and clean-up on Florisil columns. Effects of the serum extract on the AhR transactivity was determined using the Hepa 1.12cR mouse hepatoma cell line carrying an AhR-luciferase reporter gene, and the data was evaluated for possible association to the serum levels of 14 PCB congeners, 10 organochlorine pesticide residues and/or lifestyle factors.</p> <p>Results</p> <p>In total 85% of the Inuit samples elicited agonistic AhR transactivity in a district dependent pattern. The median level of the AhR-TCDD equivalent (AhR-TEQ) of the separate genders was similar in the different districts. For the combined data the order of the median AhR-TEQ was Tasiilaq > Nuuk ≥ Sisimiut > Qaanaaq possibly being related to the different composition of POPs. In overall, the AhR transactivity was inversely correlated to the levels of sum POPs, age and/or intake of marine food.</p> <p>Conclusion</p> <p>i) We observed that the proportion of dioxin like (DL) compounds in the POP mixture was the dominating factor affecting the level of serum AhR transcriptional activity even at very high level of non DL-PCBs; ii) The inverse association between the integrated serum AhR transactivity and sum of POPs might be explained by the higher level of compounds antagonizing the AhR function probably due to selective POP bioaccumulation in the food chain.</p
    • …
    corecore