821 research outputs found

    Model Atmospheres for Irradiated Giant Stars: Implications for the Galactic Center

    Get PDF
    Irradiation of a stellar atmosphere by an external source (e.g. an AGN) changes its structure and therefore its spectrum. Using a state-of-the-art stellar atmosphere code, we calculate the infrared spectra of such irradiated and transformed stars. We show that the original spectrum of the star, which is dominated by molecular bands, changes dramatically when irradiated even by a low-luminosity AGN (LX=1033L_{\rm X} = 10^{33} erg s−1^{-1}), becoming dominated by atomic lines in absorption. We study the changes in the spectrum of low-mass carbon- and oxygen-rich giant stars as they are irradiated by a modest AGN, similar to the one at the Galactic center (GC). The resulting spectra are similar to those of the faintest S-cluster stars observed in the GC. The spectrum of a star irradiated by a much brighter AGN, like that powered by a tidally disrupted star, is very different from that of any star currently observed near the GC. For the first time we have discovered that the structure of the atmosphere of an irradiated giant changes dramatically and induces a double inversion layer. We show that irradiation at the current level can explain the observed trend of CO band intensities decreasing as a function of increasing proximity to Sg A∗A^{*}. This may indicate that (contrary to previous claims) there is no paucity of old giants in the GC, which coexist simultaneously with young massive stars.Comment: Submitted to ApJ; typo in name correcte

    RXJ0142.0+2131: I. The galaxy content of an X-ray-luminous galaxy cluster at z=0.28

    Full text link
    We present a photometric and spectroscopic study of stellar populations in the X-ray-luminous cluster of galaxies RXJ0142.0+2131 at z=0.280. This paper analyses the results of high signal-to-noise spectroscopy, as well as g'-, r'-, and i'-band imaging, using the Gemini Multi-Object Spectrograph on Gemini North. Of 43 spectroscopic targets, we find 30 cluster members over a range in color. Central velocity dispersions and absorption-line strengths for lines in the range 3700A < lambda_rest < 5800A are derived for cluster members, and are compared with a low-redshift sample of cluster galaxies, and single stellar population (SSP) models. We use a combination of these indicators to estimate luminosity-weighted mean ages, metallicities ([M/H]), and alpha-element abundance ratios ([alpha/Fe]). RXJ0142.0+2131 is a relatively poor cluster and lacks galaxies with high central velocity dispersions. Although the red sequence and the Faber-Jackson relation are consistent with pure passive evolution of the early-type population with a formation redshift of z_form = 2, the strengths of the 4000A break and scaling relations between metal line indices and velocity dispersion reject this model with high significance. By inverting SSP models for the Hbeta_G, Mgb, and line indices, we calculate that, at a given velocity dispersion and metallicity, galaxies in RXJ0142.0+2131 have luminosity-weighted mean ages 0.14 +- 0.07 dex older than the low-redshift sample. We also find that [alpha/Fe] in stellar populations in RXJ0142.0+2131 is 0.14 +- 0.03 greater than at low redshift. All scaling relations are consistent with these estimated offsets. (abridged)Comment: AJ, accepted. 31 pages, 13 figures, uses emulateapj.cls. High-resolution figures available on request from first autho

    Gluten-Free Diet Only during Pregnancy Efficiently Prevents Diabetes in NOD Mouse Offspring

    Get PDF
    Studies have documented that the pathogenesis of autoimmune diabetes is influenced by the intake of gluten. Aims. To investigate the importance of gluten exposure during pregnancy and the subsequent development of autoimmune diabetes in offspring. Methods. Nonobese diabetic mice were divided into 7 groups to receive combinations of gluten-free and standard diet before, during, or after pregnancy. Diabetes incidence in offspring was followed in each group (n=16–27) for 310 days. Insulitis score and intestinal expression of T-cell transcription factors (RT-QPCR) were evaluated in animals from the different diet groups. Results. If mothers were fed a gluten-free diet only during pregnancy, the development of autoimmune diabetes in offspring was almost completely prevented with an incidence reduction from 62.5% in gluten-consuming mice to 8.3% (p<0.0001) in the gluten-free group. The islets of Langerhans were less infiltrated (p<0.001) and the intestinal expression of RORγt (Th17) (p<0.0001) reduced in mice whose mothers were Gluten-free during pregnancy. Conclusion. A gluten-free diet exclusively during pregnancy efficiently prevents autoimmune diabetes development in offspring and reduces insulitis and intestinal expression of RORγt (Th17)

    Large Anisotropic Thermal Expansion Anomaly near the Superconducting Transition Temperature in MgB2

    Full text link
    An anisotropic lattice anomaly near the superconducting transition temperature, Tc, was observed in MgB2 by high-resolution neutron powder diffraction. The a-axis thermal expansion becomes negative near Tc, while the c-axis thermal expansion is unaffected. This is qualitatively consistent with a depletion of the boron-boron s-band as the superconducting gap opens, resulting in weaker bonding. However, the observed anomaly is much larger than predicted by the Ehrenfest relation, strongly suggesting that the phonon thermal expansion also changes sign, as commonly observed in hexagonal layered crystals. These two effects may be connected through subtle changes in the phonon spectrum at Tc.Comment: 11 pages, 4 figure

    Cryptosporidium, Enterocytozoon, and Cyclospora Infections in Pediatric and Adult Patients with Diarrhea in Tanzania.

    Get PDF
    Cryptosporidiosis, microsporidiosis, and cyclosporiasis were studied in four groups of Tanzanian inpatients: adults with AIDS-associated diarrhea, children with chronic diarrhea (of whom 23 of 59 were positive [+] for human immunodeficiency virus [HIV]), children with acute diarrhea (of whom 15 of 55 were HIV+), and HIV control children without diarrhea. Cryptosporidium was identified in specimens from 6/86 adults, 5/59 children with chronic diarrhea (3/5, HIV+), 7/55 children with acute diarrhea (0/7, HIV+), and 0/20 control children. Among children with acute diarrhea, 7/7 with cryptosporidiosis were malnourished, compared with 10/48 without cryptosporidiosis (P < .01). Enterocytozoon was identified in specimens from 3/86 adults, 2/59 children with chronic diarrhea (1 HIV+), 0/55 children with acute diarrhea, and 4/20 control children. All four controls were underweight (P < .01). Cyclospora was identified in specimens from one adult and one child with acute diarrhea (HIV-). Thus, Cryptosporidium was the most frequent and Cyclospora the least frequent pathogen identified. Cryptosporidium and Enterocytozoon were associated with malnutrition. Asymptomatic fecal shedding of Enterocytozoon in otherwise healthy, HIV children has not been described previously

    Gemini Deep Deep Survey VI: Massive Hdelta-strong galaxies at z=1

    Full text link
    We show that there has been a dramatic decline in the abundance of massive galaxies with strong Hdelta stellar absorption lines from z=1.2 to the present. These ``Hdelta-strong'', or HDS, galaxies have undergone a recent and rapid break in their star-formation activity. Combining data from the Gemini Deep Deep and the Sloan Digital Sky Surveys to make mass-matched samples (M*>=10^10.2 Msun), with 25 and 50,255 galaxies, respectively), we find that the fraction of galaxies in an HDS phase has decreased from about 50% at z=1.2 to a few percent today. This decrease in fraction is due to an actual decrease in the number density of massive HDS systems by a factor of 2-4, coupled with an increase in the number density of massive galaxies by about 30 percent. We show that this result depends only weakly on the threshold chosen for the Hdelta equivalent width to define HDS systems (if greater than 4 A) and corresponds to a (1+z)^{2.5\pm 0.7} evolution. Spectral synthesis studies of the high-redshift population using the PEGASE code, treating Hdelta_A, EW[OII], Dn4000, and rest-frame colors, favor models in which the Balmer absorption features in massive Hdelta-strong systems are the echoes of intense episodes of star-formation that faded about 1 Gyr prior to the epoch of observation. The z=1.4-2 epoch appears to correspond to a time at which massive galaxies are in transition from a mode of sustained star formation to a relatively quiescent mode with weak and rare star-formation episodes. We argue that the most likely local descendants of the distant massive HDS galaxies are passively evolving massive galaxies in the field and small groups.Comment: 16 pages, 12 figures, 3 tables, uses emulateapj.sty; updated to match the version accepted by ApJ. One figure added, conclusions unchange

    The Sloan Lens ACS Survey. VII. Elliptical Galaxy Scaling Laws from Direct Observational Mass Measurements

    Full text link
    We use a sample of 53 massive early-type strong gravitational lens galaxies with well-measured redshifts (ranging from z=0.06 to 0.36) and stellar velocity dispersions (between 175 and 400 km/s) from the Sloan Lens ACS (SLACS) Survey to derive numerous empirical scaling relations. The ratio between central stellar velocity dispersion and isothermal lens-model velocity dispersion is nearly unity within errors. The SLACS lenses define a fundamental plane (FP) that is consistent with the FP of the general population of early-type galaxies. We measure the relationship between strong-lensing mass M_lens within one-half effective radius (R_e/2) and the dimensional mass variable M_dim = G^-1 sigma_e2^2 R_e/2 to be log_10 [M_lens/10^11 M_Sun] = (1.03 +/- 0.04) log_10 [M_dim/10^11 M_Sun] + (0.54 +/- 0.02) (where sigma_e2 is the projected stellar velocity dispersion within R_e/2). The near-unity slope indicates that the mass-dynamical structure of massive elliptical galaxies is independent of mass, and that the "tilt" of the SLACS FP is due entirely to variation in total (luminous plus dark) mass-to-light ratio with mass. Our results imply that dynamical masses serve as a good proxies for true masses in massive elliptical galaxies. Regarding the SLACS lenses as a homologous population, we find that the average enclosed 2D mass profile goes as log_10 [M(<R)/M_dim] = (1.10 +/- 0.09) log_10 [R/R_e] + (0.85 +/- 0.03), consistent with an isothermal (flat rotation curve) model when de-projected into 3D. This measurement is inconsistent with the slope of the average projected aperture luminosity profile at a confidence level greater than 99.9%, implying a minimum dark-matter fraction of f_DM = 0.38 +/- 0.07 within one effective radius. (abridged)Comment: 13 pages emulateapj; accepted for publication in the Ap

    Early-type galaxies in the SDSS. I. The sample

    Get PDF
    A sample of nearly 9000 early-type galaxies, in the redshift range 0.01 < z < 0.3, was selected from the Sloan Digital Sky Survey using morphological and spectral criteria. This paper describes how the sample was selected, presents examples of images and seeing corrected fits to the observed surface brightness profiles, describes our method for estimating K-corrections, and shows that the SDSS spectra are of sufficiently high quality to measure velocity dispersions accurately. It also provides catalogs of the measured photometric and spectroscopic parameters. In related papers, these data are used to study how early-type galaxy observables, including luminosity, effective radius, surface brightness, color, and velocity dispersion, are correlated with one another.Comment: 63 pages, 21 figures. Accepted by AJ (scheduled for April 2003). This paper is part I of a revised version of astro-ph/0110344. The full version of Tables 2 and 3, i.e. the tables listing the photometric and spectroscopic parameters of ~ 9000 galaxies, are available at http://astrophysics.phys.cmu.edu/~bernardi/SDSS/Etypes/TABLE

    The Globular Cluster Systems in the Coma Ellipticals. II: Metallicity Distribution and Radial Structure in NGC 4874, and Implications for Galaxy Formation

    Full text link
    Deep HST/WFPC2 (V,I) photometry is used to investigate the globular cluster system (GCS) in NGC 4874, the central cD galaxy of the Coma cluster. The luminosity function of the clusters displays its normal Gaussian-like shape and turnover level. Other features of the system are surprising: the GCS is (a) spatially extended, with core radius r_c = 22 kpc, (b) entirely metal-poor (a narrow, unimodal metallicity distribution with mean [Fe/H] = -1.5), and (c) modestly populated, with specific frequency S_N = 3.7 +- 0.5. We suggest on the basis of some simple models that as much as half of this galaxy might have accreted from low-mass satellites, but no single one of the three classic modes of galaxy formation (accretion, disk mergers, in situ formation) can supply a fully satisfactory formation picture. Even when they are used in combination, strong challenges to these models remain. The principal anomaly in this GCS is essentially the complete lack of metal-rich clusters. If these were present in normal (M87-like) numbers in addition to the metal-poor ones that are already there, then the GCS in total would more closely resemble what we see in many other giant E galaxies.Comment: 27 pp. with 9 Figures. Astrophys.J. 533, in press (April 10, 2000

    Three-Dimensional Simulations of Jets from Keplerian Disks: Self--Regulatory Stability

    Full text link
    We present the extension of previous two-dimensional simulations of the time-dependent evolution of non-relativistic outflows from the surface of Keplerian accretion disks, to three dimensions. The accretion disk itself is taken to provide a set of fixed boundary conditions for the problem. The 3-D results are consistent with the theory of steady, axisymmetric, centrifugally driven disk winds up to the Alfv\'en surface of the outflow. Beyond the Alfv\'en surface however, the jet in 3-D becomes unstable to non-axisymmetric, Kelvin-Helmholtz instabilities. We show that jets maintain their long-term stability through a self-limiting process wherein the average Alfv\'enic Mach number within the jet is maintained to order unity. This is accomplished in at least two ways. First, poloidal magnetic field is concentrated along the central axis of the jet forming a ``backbone'' in which the Alfv\'en speed is sufficiently high to reduce the average jet Alfv\'enic Mach number to unity. Second, the onset of higher order Kelvin-Helmholtz ``flute'' modes (m \ge 2) reduce the efficiency with which the jet material is accelerated, and transfer kinetic energy of the outflow into the stretched, poloidal field lines of the distorted jet. This too has the effect of increasing the Alfv\'en speed, and thus reducing the Alfv\'enic Mach number. The jet is able to survive the onset of the more destructive m=1 mode in this way. Our simulations also show that jets can acquire corkscrew, or wobbling types of geometries in this relatively stable end-state, depending on the nature of the perturbations upon them. Finally, we suggest that jets go into alternating periods of low and high activity as the disappearance of unstable modes in the sub-Alfv\'enic regime enables another cycle of acceleration to super-Alfv\'enic speeds.Comment: 57 pages, 22 figures, submitted to Ap
    • 

    corecore