76 research outputs found

    Near Zone Navier-Stokes Analysis of Heavy Quark Jet Quenching in an N\mathcal{N} =4 SYM Plasma

    Full text link
    The near zone energy-momentum tensor of a supersonic heavy quark jet moving through a strongly-coupled N=4\mathcal{N}=4 SYM plasma is analyzed in terms of first-order Navier-Stokes hydrodynamics. It is shown that the hydrodynamical description of the near quark region worsens with increasing quark velocities. For realistic quark velocities, v=0.99v=0.99, the non-hydrodynamical region is located at a narrow band surrounding the quark with a width of approximately 3/Ï€T3/\pi T in the direction parallel to the quark's motion and with a length of roughly 10/Ï€T10/\pi T in the perpendicular direction. Our results can be interpreted as an indication of the presence of coherent Yang-Mills fields where deviation from hydrodynamics is at its maximum. In the region where hydrodynamics does provide a good description of the system's dynamics, the flow velocity is so small that all the nonlinear terms can be dropped. Our results, which are compatible with the thermalization timescales extracted from elliptic flow measurements, suggest that if AdS/CFT provides a good description of the RHIC system, the bulk of the quenched jet energy has more than enough time to locally thermalize and become encoded in the collective flow. The resulting flow pattern close to the quark, however, is shown to be considerably different than the superposition of Mach cones and diffusion wakes observed at large distances.Comment: new revised version, 11 figures, as published in PR

    Universal Flow-Driven Conical Emission in Ultrarelativistic Heavy-Ion Collisions

    Full text link
    The double-peak structure observed in soft-hard hadron correlations is commonly interpreted as a signature for a Mach cone generated by a supersonic jet interacting with the hot and dense medium created in ultrarelativistic heavy-ion collisions. We show that it can also arise due to averaging over many jet events in a transversally expanding background. We find that the jet-induced away-side yield does not depend on the details of the energy-momentum deposition in the plasma, the jet velocity, or the system size. Our claim can be experimentally tested by comparing soft-hard correlations induced by heavy-flavor jets with those generated by light-flavor jets.Comment: 4 pages, 3 figure

    Color-flavor locked superconductor in a magnetic field

    Full text link
    We study the effects of moderately strong magnetic fields on the properties of color-flavor locked color superconducting quark matter in the framework of the Nambu-Jona-Lasinio model. We find that the energy gaps, which describe the color superconducting pairing as well as the magnetization, are oscillating functions of the magnetic field. Also, we observe that the oscillations of the magnetization can be so strong that homogeneous quark matter becomes metastable for a range of parameters. We suggest that this points to the possibility of magnetic domains or other types of magnetic inhomogeneities in the quark cores of magnetars.Comment: 12 pages, 3 figures. Version accepted for publication in Phys. Rev.

    Absence of the London limit for the first-order phase transition to a color superconductor

    Full text link
    We study the effects of gauge-field fluctuations on the free energy of a homogeneous color superconductor in the color-flavor-locked (CFL) phase. Gluonic fluctuations induce a strong first-order phase transition, in contrast to electronic superconductors where this transition is weakly first order. The critical temperature for this transition is larger than the one corresponding to the diquark pairing instability. The physical reason is that the gluonic Meissner masses suppress long-wavelength fluctuations as compared to the normal conducting phase where gluons are massless, which stabilizes the superconducting phase. In weak coupling, we analytically compute the temperatures associated with the limits of metastability of the normal and superconducting phases, as well as the latent heat associated with the first-order phase transition. We then extrapolate our results to intermediate densities and numerically evaluate the temperature of the fluctuation-induced first-order phase transition, as well as the discontinuity of the diquark condensate at the critical point. We find that the London limit of magnetic interactions is absent in color superconductivity.Comment: 14 pages, 5 figure

    Universality of the Diffusion Wake from Stopped and Punch-Through Jets in Heavy-Ion Collisions

    Full text link
    We solve (3+1)-dimensional ideal hydrodynamical equations with source terms that describe punch-through and fully stopped jets in order to compare their final away-side angular correlations in a static medium. For fully stopped jets, the backreaction of the medium is described by a simple Bethe-Bloch-like model which leads to an explosive burst of energy and momentum (Bragg peak) close to the end of the jet's evolution through the medium. Surprisingly enough, we find that the medium's response and the corresponding away-side angular correlations are largely insensitive to whether the jet punches through or stops inside the medium. This result is also independent of whether momentum deposition is longitudinal (as generally occurs in pQCD energy loss models) or transverse (as the Bethe-Bloch formula implies). The existence of the diffusion wake is therefore shown to be universal to all scenarios where momentum as well as energy is deposited into the medium, which can readily be understood in ideal hydrodynamics through vorticity conservation. The particle yield coming from the strong forward moving diffusion wake that is formed in the wake of both punch-through and stopped jets largely overwhelms their weak Mach cone signal after freeze-out.Comment: 9 pages, 6 figures, revised version, main results unchange

    Differential microRNA Profile in Operational Tolerance: A Potential Role in Favoring Cell Survival

    Get PDF
    Background: Operational tolerance (OT) is a state of graft functional stability that occurs after at least 1 year of immunosuppressant withdrawal. MicroRNAs (microRNA) are small non-coding RNAs that downregulate messenger RNA/protein expression of innumerous molecules and are critical for homeostasis. We investigated whether OT in kidney transplantation displays a differential microRNA profile, which would suggest that microRNAs participate in Operational Tolerance mechanisms, and may reveal potential molecular pathways.Methods: We first compared serum microRNA in OT (n = 8) with chronic rejection (CR) (n = 5) and healthy individuals (HI) (n = 5), using a 768-microRNA qPCR-panel. We used the Thermo Fisher Cloud computing platform to compare the levels of microRNAs in the OT group in relation to the other study groups. We performed validation experiments for miR-885-5p, by q-PCR, in a larger number of study subjects (OT = 8, CR = 12, HI = 12), as individual samples.Results: We detected a differential microRNA profile in OT vs. its opposing clinical outcome—CR—suggesting that microRNAs may integrate transplantation tolerance mechanisms. Some miRNAs were detected at higher levels in OT: miR-885-5p, miR-331-3p, miR-27a-5p vs. CR; others, we found at lower levels: miR-1233-3p, miR-572, miR-638, miR-1260a. Considering highly predicted/experimentally demonstrated targets of these miRNAs, bioinformatics analysis revealed that the granzyme B, and death receptor pathways are dominant, suggesting that cell death regulation integrates transplantation tolerance mechanisms. We confirmed higher miR-885-5p levels in OT vs. CR, and vs. HI, in a larger number of subjects.Conclusions: We propose that epigenetics mechanisms involving microRNAs may integrate human transplantation tolerance mechanisms, and regulate key members of the cell death/survival signaling. miR-885-5p could favor cell survival in OT by diminishing the levels of CRADD/RAIDD and CASP3. Nonetheless, given the nature of any complex phenomenon in humans, only cumulative data will help to determine whether this microRNA differential profile may be related to the cause or consequence of operational tolerance

    Curcumin encapsulation in nanostructures for cancer therapy: a 10-year overview

    Get PDF
    Journal pre-proofsCurcumin (CUR) is a phenolic compound present in some herbs, including Curcuma longa Linn. (turmeric rhizome), with a high bioactive capacity and characteristic yellow color. It is mainly used as a spice, although it has been found that CUR has interesting pharmaceutical properties, acting as a natural antioxidant, anti-inflammatory, antimicrobial, and antitumoral agent. Nonetheless, CUR is a hydrophobic compound with low water solubility, poor chemical stability, and fast metabolism, limiting its use as a pharmacological compound. Smart drug delivery systems (DDS) have been used to overcome its low bioavailability and improve its stability. The current work overviews the literature from the past 10 years on the encapsulation of CUR in nanostructured systems, such as micelles, liposomes, niosomes, nanoemulsions, hydrogels, and nanocomplexes, emphasizing its use and ability in cancer therapy. The studies highlighted in this review have shown that these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged CUR release, and reduced side effects, among other interesting advantages.This study was funded by the Coordination for Higher Level Graduate Improvements (CAPES/Brazil, finance code 001), National Council for Scientific and Technological Development (CNPq/Brazil, PIBIC process #123483/2020-4), State of São Paulo Research Foundation (FAPESP/Brazil, processes #2017/10789-1, #2018/10799-0, #2018/06475-4, #2018/07707-6, #2019/08549-8, and #2020/03727-2). This work was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and the project AgriFood XXI (NORTE-01-0145-FEDER-000041) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Our Figures were created with BioRenderinfo:eu-repo/semantics/publishedVersio

    Bioactivity studies and chemical profile of the antidiabetic plant Genista tenera

    Get PDF
    Aim of the study: Genista tenera is a plant endemic to the island of Madeira and is used in folk medicine to control diabetes. In the present work we evaluate the antihyperglycaemic activity of its n-butanol extract and determine its chromatographic profile. In addition, this extract, the ethyl acetate and diethyl ether plant extracts were studied in order to assess the plant antioxidant and acetylcholinesterase inhibitory activities, as well as its cyto- and genotoxicities. Materials and methods: HPLC-DAD-ESI-MS was used to analyze the flavonoid profile of the n-butanol extract. The antihyperglycaemic activity of this extract was performed over streptozotocin induced diabetic Wistar rats (200mg/kg, bw/day), for 15 days. Antioxidant activity (DPPH assay) and acetylcholinesterase inhibitory effect (Ellman method) were also performed. Acute cytotoxicity and genotoxicity were assessed by proliferative index quantification and the short-term chromosomal aberration technique, after exposure of lymphocytes to the extracts. Results and conclusions: The n-butanol extract, where 21 monoglycosyl and 12 diglycosyl flavonoids were detected, significantly lowered blood glucose levels, bringing them to normal values after 15 days of treatment. The best radical scavenging activity was observed for the ethyl acetate extract (48.7% at 139.1μg/mL), which was also the most effective one at the minimal concentration tested. The highest acetylcholinesterase inhibitory activity (77.0% at 70. 0μg/mL) was also obtained with the ethyl acetate extract. In vitro toxicity studies showed no evidence for acute cytotoxicity or genotoxicity. This is the first report on antidiabetic activity of genus Genista.MCES, FCT, British Council; BBSRC and Merck, Sharp & Dohm
    • …
    corecore