10 research outputs found

    Magnetic structure and spin dynamics of quasi-one-dimensional spin-chain antiferromagnet BaCo2V2O8

    Full text link
    We report a neutron diffraction and muon spin relaxation muSR study of static and dynamical magnetic properties of BaCo2V2O8, a quasi-one-dimensional spin-chain system. A proposed model for the antiferromagnetic structure includes: a propagation vector k_AF = (0, 0, 1), independent of external magnetic fields for fields below a critical value H_c(T). The ordered moments, of 2.18 \mu_B per Co ion, are aligned along the crystallographic c-axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged ferromagnetically (forming zig-zags paths) along one of the axis and antiferromagnetically along the other. The temperature dependence of the sub-lattice magnetization is consistent with the expectations of the 3D Ising model. A similar behavior is observed for the internal static fields at different muon stopping sites. Muon time spectra measured at weak longitudinal fields and temperatures much higher than T_N can be well described using a single muon site with an exponential muon spin relaxation that gradually changes into an stretched exponential on approaching T_N. The temperature-induced changes of the relaxation suggest that the Co fluctuations dramatically slow down and the system becomes less homogeneous as it approaches the antiferromagnetic state.Comment: 7 pages, 9 figure

    Influence of the Fermi Surface Morphology on the Magnetic Field-Driven Vortex Lattice Structure Transitions in YBa2_{2}Cu3_{3}O7δ:δ=_{7-\delta}:\delta=0, 0.15

    Full text link
    We report small-angle neutron scattering measurements of the vortex lattice (VL) structure in single crystals of the lightly underdoped cuprate superconductor YBa2Cu3O6.85. At 2 K, and for fields of up to 16 T applied parallel to the crystal c-axis, we observe a sequence of field-driven and first-order transitions between different VL structures. By rotating the field away from the c-axis, we observe each structure transition to shift to either higher or lower field dependent on whether the field is rotated towards the [100] or [010] direction. We use this latter observation to argue that the Fermi surface morphology must play a key role in the mechanisms that drive the VL structure transitions. Furthermore, we show this interpretation is compatible with analogous results obtained previously on lightly overdoped YBa2Cu3O7. In that material, it has long-been suggested that the high field VL structure transition is driven by the nodal gap anisotropy. In contrast, the results and discussion presented here bring into question the role, if any, of a nodal gap anisotropy on the VL structure transitions in both YBa2Cu3O6.85 and YBa2Cu3O7

    Magnetic nano-fluctuations in a frustrated magnet

    Full text link
    Frustrated systems exhibit remarkable properties due to the high degeneracy of their ground states. Stabilised by competing interactions, a rich diversity of typically nanometre-sized phase structures appear in polymer and colloidal systems, while the surface of ice pre-melts due to geometrically frustrated interactions. Atomic spin systems where magnetic interactions are frustrated by lattice geometry provide a fruitful source of emergent phenomena, such as fractionalised excitations analogous to magnetic monopoles. The degeneracy inherent in frustrated systems may prevail all the way down to absolute zero temperature, or it may be lifted by small perturbations or entropic effects. In the geometrically frustrated Ising--like magnet Ca3Co2O6, we follow the temporal and spatial evolution of nanoscale magnetic fluctuations firmly embedded inside the spin--density--wave magnetic structure. These fluctuations are a signature of a competing ferrimagnetic phase with an incommensurability that is different from, but determined by the host. As the temperature is lowered, the fluctuations slow down into a super-paramagnetic regime of stable spatiotemporal nano-structures

    Switching of magnetic domains reveals evidence for spatially inhomogeneous superconductivity

    Full text link
    The interplay of magnetic and charge fluctuations can lead to quantum phases with exceptional electronic properties. A case in point is magnetically-driven superconductivity, where magnetic correlations fundamentally affect the underlying symmetry and generate new physical properties. The superconducting wave-function in most known magnetic superconductors does not break translational symmetry. However, it has been predicted that modulated triplet p-wave superconductivity occurs in singlet d-wave superconductors with spin-density wave (SDW) order. Here we report evidence for the presence of a spatially inhomogeneous p-wave Cooper pair-density wave (PDW) in CeCoIn5. We show that the SDW domains can be switched completely by a tiny change of the magnetic field direction, which is naturally explained by the presence of triplet superconductivity. Further, the Q-phase emerges in a common magneto-superconducting quantum critical point. The Q-phase of CeCoIn5 thus represents an example where spatially modulated superconductivity is associated with SDW order

    Dynamics across the structural transitions at elevated temperatures in Na0.7CoO2

    No full text
    The layered transition-metal oxide Nax CoO2 has been studied extensively both for its correlated electronic properties as well as for potential battery applications. It was discovered that high-temperature Na ion vacancy order and dynamics can be very useful to tailor low-temperature properties of members of this compound family. We have studied the Na-ion dynamics on the atomic length-scale in the Na0.7 CoO2 compound by neutron spectroscopy. The temperature dependence of both the elastic and the inelastic intensities show steps at TA ≈ 290 K and TB ≈ 400 K. At TA the step is shown to be connected to low energy phonons, while at TB the Na ion diffusion suddenly gets fast enough, and the characteristic signal of quasielastic scattering appears. The current results further elucidate the subtle changes in the Na ion dynamics that have been revealed in our previous neutron diffraction studies [1], intimately connecting structural transformations at TA and TB with the opening-up of 1D and 2D Na-ion diffusion paths. Finally, the estimated diffusion coefficient above TB was found to differ from the one measured by muon-spin relaxation (μ+SR) [2] by about four orders of magnitude. However it might be that the present QENS data rather describe a fast localized prozess than a long range translational diffusion. Within this model the corresponding time scale (ℏ/E) would be in the order of 50 ps

    Dynamics across the structural transitions at elevated temperatures in Na0.7CoO2

    No full text
    The layered transition-metal oxide Nax CoO2 has been studied extensively both for its correlated electronic properties as well as for potential battery applications. It was discovered that high-temperature Na ion vacancy order and dynamics can be very useful to tailor low-temperature properties of members of this compound family. We have studied the Na-ion dynamics on the atomic length-scale in the Na-0.7 CoO2 compound by neutron spectroscopy. The temperature dependence of both the elastic and the inelastic intensities show steps at T-A approximate to 290K and T-B approximate to 400 K. At T-A the step is shown to be connected to low energy phonons, while at TB the Na ion diffusion suddenly gets fast enough, and the characteristic signal of quasielastic scattering appears. The current results further elucidate the subtle changes in the Na ion dynamics that have been revealed in our previous neutron diffraction studies [1], intimately connecting structural transformations at TA and TB with the opening-up of 1D and 2D Na-ion diffusion paths. Finally, the estimated diffusion coefficient above TB was found to differ from the one measured by muon- spin relaxation (mu(+) SR) [2] by about four orders of magnitude. However it might be that the present QENS data rather describe a fast localized prozess than a long range translational diffusion. Within this model the corresponding time scale (h/E) would be in the order of 50 ps

    Magnetic field dependence of the basal-plane superconducting anisotropy in YBa2Cu4O8 from small-angle neutron scattering measurements of the vortex lattice

    No full text
    We report a study of the basal-plane anisotropy of the superfluid density in underdoped YBa2Cu4O8 (Y124), showing the effects of both the CuO2 planes and the fully occupied CuO chains. From small-angle neutron scattering measurements of the vortex lattice, we can infer the superconducting (SC) properties for a temperature (T) range T = 1.5 K to T-c and magnetic induction B from 0.1 to 6 T. We find that the superfluid density along a has a simple d-wave T dependence. However, along b (the chain direction) the superfluid density falls much more rapidly with T and also with increasing field. This strongly suggests the suppression of proximity-effect-induced superconductivity in the CuO chains. In addition, our results do not support a common framework for the low-field in-plane SC response in Y124 and related YBa2Cu3O7, and also indicate that any magnetic field induced charge-density-wave order in Y124 exists only for fields above 6 T
    corecore