2 research outputs found

    Table_1_Clustering Analysis of FDG-PET Imaging in Primary Progressive Aphasia.docx

    No full text
    <p>Background: Primary progressive aphasia (PPA) is a clinical syndrome characterized by the neurodegeneration of language brain systems. Three main clinical forms (non-fluent, semantic, and logopenic PPA) have been recognized, but applicability of the classification and the capacity to predict the underlying pathology is controversial. We aimed to study FDG-PET imaging data in a large consecutive case series of patients with PPA to cluster them into different subtypes according to regional brain metabolism.</p><p>Methods: 122 FDG-PET imaging studies belonging to 91 PPA patients and 28 healthy controls were included. We developed a hierarchical agglomerative cluster analysis with Ward's linkage method, an unsupervised clustering algorithm. We conducted voxel-based brain mapping analysis to evaluate the patterns of hypometabolism of each identified cluster.</p><p>Results: Cluster analysis confirmed the three current PPA variants, but the optimal number of clusters according to Davies-Bouldin index was 6 subtypes of PPA. This classification resulted from splitting non-fluent variant into three subtypes, while logopenic PPA was split into two subtypes. Voxel-brain mapping analysis displayed different patterns of hypometabolism for each PPA group. New subtypes also showed a different clinical course and were predictive of amyloid imaging results.</p><p>Conclusion: Our study found that there are more than the three already recognized subtypes of PPA. These new subtypes were more predictive of clinical course and showed different neuroimaging patterns. Our results support the usefulness of FDG-PET in evaluating PPA, and the applicability of computational methods in the analysis of brain metabolism for improving the classification of neurodegenerative disorders.</p

    Data_Sheet_1_Validation of the cross-cultural dementia screening test in Alzheimer’s disease and Parkinson’s disease.pdf

    No full text
    ObjectiveThe Cross-Cultural Dementia (CCD) is a new screening tool to evaluate cognitive impairment based on a cross-cultural perspective to reduce the bias of education, and language and cultural differences. We aimed to evaluate the diagnostic properties of the CCD in Spaniards for the assessment of patients with Alzheimer’s disease in mild cognitive impairment (AD-MCI) and mild dementia stages (AD-D) and patients with mild cognitive impairment associated with Parkinson’s disease (PD-MCI).MethodsSixty participants with AD (50% MCI) and thirty with PD-MCI were enrolled. Each clinical group was compared against a healthy control group (HC) with the same number of participants and no significant differences in age, education, and sex. A comprehensive neuropsychological test battery and CCD were completed. Intergroup comparisons, ROC curves, and cut-off scores were calculated for the study of diagnostic properties.ResultsIntergroup differences were found in accordance with the cognitive profile of each clinical condition. Memory measures (Objects test) were especially relevant for the classification between AD and HC. Memory and executive function scores (Sun-Moon and Dots tests) were useful in the case of PD-MCI and HC. Furthermore, CCD described differences in executive functions and speed scores comparing AD-MCI and PD-MCI. Correlations between standardized neuropsychological tests and CCD measures supported the convergent validity of the test.ConclusionCCD showed good discrimination properties and cut-off scores for dementia and extended its application to a sample of prodromal stages of AD and PD with mild cognitive impairment.</p
    corecore