43 research outputs found

    How unconventional chaotic pseudo-random generators influence population diversity in differential evolution

    No full text
    This research focuses on the modern hybridization of the discrete chaotic dynamics and the evolutionary computation. It is aimed at the influence of chaotic sequences on the population diversity as well as at the algorithm performance of the simple parameter adaptive Differential Evolution (DE) strategy: jDE. Experiments are focused on the extensive investigation of totally ten different randomization schemes for the selection of individuals in DE algorithm driven by the default pseudo random generator of Java environment and nine different two-dimensional discrete chaotic systems, as the chaotic pseudo-random number generators. The population diversity and jDE convergence are recorded for 15 test functions from the CEC 2015 benchmark set in 30D. © Springer International Publishing AG, part of Springer Nature 2018.2018/177; IC406; MSMT-7778/2014, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; LO1303, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; 710577, Horizon 2020; CA15140; IGA/CebiaTech/2018/003; CZ.1.05/2.1.00/03.0089, FEDER, European Regional Development FundMinistry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the Project CEBIA-Tech [CZ.1.05/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2018/003]; COST ActionEuropean Cooperation in Science and Technology (COST) [CA15140, IC406]; SGS [2018/177]; VSB-TUO; EU's Horizon 2020 research and innovation programme [710577

    A brief overview of the synergy between metaheuristics and unconventional dynamics

    No full text
    This brief review paper focuses on the modern and original hybridization of the unconventional dynamics and the metaheuristic optimization algorithms. It discusses the concept of chaos-based optimization in general, i.e. the influence of chaotic sequences on the population diversity as well as at the metaheuristics performance. Further, the non-random processes used in evolutionary algorithms, and finally also the examples of the evolving complex network dynamics as the unconventional tool for the visualization and analysis of the population in popular optimization metaheuristics. This work should inspire the researchers for applying such methods and take advantage of possible performance improvements for the optimization tasks. © Springer Nature Switzerland AG 2020
    corecore