3,901 research outputs found

    The Gaia Project - technique, performance and status

    Full text link
    Gaia is a satellite mission of the ESA, aiming at absolute astrometric measurements of about one billion stars (all stars down to 20th magnitude, with unprecedented accuracy. Additionally, magnitudes and colors will be obtained for all these stars, while radial-velocities and spectral properties will be determined only for bright objects (V<17.5). At 15th magnitude Gaia aims at an angular accuracy of 20 microarcseconds (muas). This goal can only be reached if the geometry of the telescopes, the detectors, and the pointing of Gaia at each moment ("attitude") can be inferred from the Gaia measurements itself with muas accuracy.Comment: six pages, invited talk at the conference "Galactic & Stellar Dynamics in the era of high resolution surveys", Strasbourg 16-20 March 200

    Modulation of extramedullary hematopoiesis during cytomegalovirus infection

    Get PDF

    Analysis of the Hydrogen-rich Magnetic White Dwarfs in the SDSS

    Full text link
    We have calculated optical spectra of hydrogen-rich (DA) white dwarfs with magnetic field strengths between 1 MG and 1000 MG for temperatures between 7000 K and 50000 K. Through a least-squares minimization scheme with an evolutionary algorithm, we have analyzed the spectra of 114 magnetic DAs from the SDSS (95 previously published plus 14 newly discovered within SDSS, and five discovered by SEGUE). Since we were limited to a single spectrum for each object we used only centered magnetic dipoles or dipoles which were shifted along the magnetic dipole axis. We also statistically investigated the distribution of magnetic-field strengths and geometries of our sample.Comment: to appear in the proceedings of the 16th European Workshop on White Dwarfs, Barcelona, 200

    Gravity-induced birefringence within the framework of Poincare gauge theory

    Get PDF
    Gauge theories of gravity provide an elegant and promising extension of general relativity. In this paper we show that the Poincar\'e gauge theory exhibits gravity-induced birefringence under the assumption of a specific gauge invariant nonminimal coupling between torsion and Maxwell's field. Furthermore we give for the first time an explicit expression for the induced phaseshift between two orthogonal polarization modes within the Poincar\'e framework. Since such a phaseshift can lead to a depolarization of light emitted from an extended source this effect is, in principle, observable. We use white dwarf polarimetric data to constrain the essential coupling constant responsible for this effect.Comment: 12 pages, accepted for publication by Physical Review
    corecore