21,157 research outputs found

    Quantum Discord and Quantum Computing - An Appraisal

    Full text link
    We discuss models of computing that are beyond classical. The primary motivation is to unearth the cause of nonclassical advantages in computation. Completeness results from computational complexity theory lead to the identification of very disparate problems, and offer a kaleidoscopic view into the realm of quantum enhancements in computation. Emphasis is placed on the `power of one qubit' model, and the boundary between quantum and classical correlations as delineated by quantum discord. A recent result by Eastin on the role of this boundary in the efficient classical simulation of quantum computation is discussed. Perceived drawbacks in the interpretation of quantum discord as a relevant certificate of quantum enhancements are addressed.Comment: To be published in the Special Issue of the International Journal of Quantum Information on "Quantum Correlations: entanglement and beyond." 11 pages, 4 figure

    Quantum Algorithms for Fermionic Quantum Field Theories

    Get PDF
    Extending previous work on scalar field theories, we develop a quantum algorithm to compute relativistic scattering amplitudes in fermionic field theories, exemplified by the massive Gross-Neveu model, a theory in two spacetime dimensions with quartic interactions. The algorithm introduces new techniques to meet the additional challenges posed by the characteristics of fermionic fields, and its run time is polynomial in the desired precision and the energy. Thus, it constitutes further progress towards an efficient quantum algorithm for simulating the Standard Model of particle physics.Comment: 29 page

    Quantum Algorithms for Quantum Field Theories

    Get PDF
    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We develop a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (phi-fourth theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.Comment: v2: appendix added (15 pages + 25-page appendix

    Quantum Computation of Scattering in Scalar Quantum Field Theories

    Get PDF
    Quantum field theory provides the framework for the most fundamental physical theories to be confirmed experimentally, and has enabled predictions of unprecedented precision. However, calculations of physical observables often require great computational complexity and can generally be performed only when the interaction strength is weak. A full understanding of the foundations and rich consequences of quantum field theory remains an outstanding challenge. We develop a quantum algorithm to compute relativistic scattering amplitudes in massive phi-fourth theory in spacetime of four and fewer dimensions. The algorithm runs in a time that is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. Thus, it offers exponential speedup over existing classical methods at high precision or strong coupling

    Thermal correlators of anyons in two dimensions

    Full text link
    The anyon fields have trivial α\alpha-commutator for α\alpha not integer. For integer α\alpha the commutators become temperature-dependent operator valued distributions. The nn-point functions do not factorize as for quasifree states.Comment: 14 pages, LaTeX (misprints corrected, a reference added

    BQP-completeness of Scattering in Scalar Quantum Field Theory

    Get PDF
    Recent work has shown that quantum computers can compute scattering probabilities in massive quantum field theories, with a run time that is polynomial in the number of particles, their energy, and the desired precision. Here we study a closely related quantum field-theoretical problem: estimating the vacuum-to-vacuum transition amplitude, in the presence of spacetime-dependent classical sources, for a massive scalar field theory in (1+1) dimensions. We show that this problem is BQP-hard; in other words, its solution enables one to solve any problem that is solvable in polynomial time by a quantum computer. Hence, the vacuum-to-vacuum amplitude cannot be accurately estimated by any efficient classical algorithm, even if the field theory is very weakly coupled, unless BQP=BPP. Furthermore, the corresponding decision problem can be solved by a quantum computer in a time scaling polynomially with the number of bits needed to specify the classical source fields, and this problem is therefore BQP-complete. Our construction can be regarded as an idealized architecture for a universal quantum computer in a laboratory system described by massive phi^4 theory coupled to classical spacetime-dependent sources.Comment: 41 pages, 7 figures. Corrected typo in foote

    Boundary and impurity effects on entanglement of Heisenberg chains

    Full text link
    We study entanglement of a pair of qubits and the bipartite entanglement between the pair and the rest within open-ended Heisenberg XXXXXX and XY models. The open boundary condition leads to strong oscillations of entanglements with a two-site period, and the two kinds of entanglements are 180 degree out of phase with each other. The mean pairwise entanglement and ground-state energy per site in the XXXXXX model are found to be proportional to each other. We study the effects of a single bulk impurity on entanglement, and find that there exists threshold values of the relative coupling strength between the impurity and its nearest neighbours, after which the impurity becomes pairwise entangled with its nearest neighbours.Comment: 6 pages and 6 figure

    Upper limit to ΩB\Omega_B in scalar-tensor gravity theories

    Full text link
    In a previous paper (Serna & Alimi 1996), we have pointed out the existence of some particular scalar-tensor gravity theories able to relax the nucleosynthesis constraint on the cosmic baryonic density. In this paper, we present an exhaustive study of primordial nucleosynthesis in the framework of such theories taking into account the currently adopted observational constraints. We show that a wide class of them allows for a baryonic density very close to that needed for the universe closure. This class of theories converges soon enough towards General Relativity and, hence, is compatible with all solar-system and binary pulsar gravitational tests. In other words, we show that primordial nucleosynthesis does not always impose a very stringent bound on the baryon contribution to the density parameter.Comment: uuencoded tar-file containing 16 pages, latex with 5 figures, accepted for publication in Astrophysical Journal (Part 1
    corecore