35 research outputs found

    Heterotic Trait Locus (HTL) Mapping Identifies Intra-Locus Interactions That Underlie Reproductive Hybrid Vigor in Sorghum bicolor

    Get PDF
    Identifying intra-locus interactions underlying heterotic variation among whole-genome hybrids is a key to understanding mechanisms of heterosis and exploiting it for crop and livestock improvement. In this study, we present the development and first use of the heterotic trait locus (HTL) mapping approach to associate specific intra-locus interactions with an overdominant heterotic mode of inheritance in a diallel population using Sorghum bicolor as the model. This method combines the advantages of ample genetic diversity and the possibility of studying non-additive inheritance. Furthermore, this design enables dissecting the latter to identify specific intra-locus interactions. We identified three HTLs (3.5% of loci tested) with synergistic intra-locus effects on overdominant grain yield heterosis in 2 years of field trials. These loci account for 19.0% of the heterotic variation, including a significant interaction found between two of them. Moreover, analysis of one of these loci (hDPW4.1) in a consecutive F2 population confirmed a significant 21% increase in grain yield of heterozygous vs. homozygous plants in this locus. Notably, two of the three HTLs for grain yield are in synteny with previously reported overdominant quantitative trait loci for grain yield in maize. A mechanism for the reproductive heterosis found in this study is suggested, in which grain yield increase is achieved by releasing the compensatory tradeoffs between biomass and reproductive output, and between seed number and weight. These results highlight the power of analyzing a diverse set of inbreds and their hybrids for unraveling hitherto unknown allelic interactions mediating heterosis

    Control of apoptosis by p53

    No full text

    Expression of Bcl-XS alters cytokinetics and decreases clonogenic survival in K12 rat colon carcinoma cells

    No full text
    bcl-XS, a member of the bcl-2 family, has been shown to induce and/or sensitize some cells to undergo programmed cell death, and to negate the anti-apoptotic activity of bcl-XL and bcl-2 by mechanisms which are still uncertain. To help understand these mechanisms we have established stable derivatives of the K12 rat colon carcinoma cell line that express bcl-XS in a tetracyclineregulated manner, using an autoregulatory retroviral cassette. When bcl-XS expression is induced, we observe two phenotypic responses. A small fraction of cells appear to undergo spontaneous apoptosis while the majority of cells undergo a form of cytostasis. In the latter case, the cells stop dividing (or divide a limited number of times at a retarded rate) and swell to many times their original size. These cells can take on a ghostlike appearance and subsequently detach from the culture plates and die or they may remain intact in a hindered state of proliferation. Doubling times were calculated to be 31.4 h in the presence of tetracycline and 50.4 h without tetracycline, bcl-XS expression also causes dramatic alterations in the cell cycle distribution of K12 cells manifesting as a substantial decrease (&50%) in the fraction of S phase cells with a concomitant increase in the G1 population. Continuous expression of bcl-XS, at levels approximately equal to that of bcl-XL, decreased the viability of K12 cells as demonstrated by a log decline in clonogenic survival. This decrease occurred without considerable apoptosis or a compensatory increase in the level of bcl-XL. None of these phenotypes were present in control cells expressing b-galactosidase in a similar retroviral cassette. These observations demonstrate that bcl-XS can have substantial cytokinetic eects under circumstances that produce relatively little apoptosis

    INCB16562, a JAK1/2 Selective Inhibitor, Is Efficacious against Multiple Myeloma Cells and Reverses the Protective Effects of Cytokine and Stromal Cell Support

    Get PDF
    Cytokines in the bone marrow of multiple myeloma patients activate Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways in tumor cells and promote tumor growth, survival, and drug resistance. INCB16562 was developed as a novel, selective, and orally bioavailable small-molecule inhibitor of JAK1 and JAK2 markedly selective over JAK3. The specific cellular activity of the inhibitor was demonstrated by its potent and dose-dependent inhibition of cytokine-dependent JAK/STAT signaling and cell proliferation in the absence of effects on Bcr-Abl-expressing cells. Treatment of myeloma cells with INCB16562 potently inhibited interleukin-6 (IL-6)-induced phosphorylation of STAT3. Moreover, the proliferation and survival of myeloma cells dependent on IL-6 for growth, as well as the IL-6-induced growth of primary bone marrow-derived plasma cells from a multiple myeloma patient, were inhibited by INCB16562. Induction of caspase activation and apoptosis was observed and attributed, at least in part, to the suppression of Mcl-1 expression. Importantly, INCB16562 abrogated the protective effects of recombinant cytokines or bone marrow stromal cells and sensitized myeloma cells to cell death by exposure to dexamethasone, melphalan, or bortezomib. Oral administration of INCB16562 antagonized the growth of myeloma xenografts in mice and enhanced the antitumor activity of relevant agents in combination studies. Taken together, these data suggest that INCB16562 is a potent JAK1/2 inhibitor and that mitigation of JAK/STAT signaling by targeting JAK1 and JAK2 will be beneficial in the treatment of myeloma patients, particularly in combination with other agents
    corecore