17 research outputs found

    Distinct patterns of functional and effective connectivity between perirhinal cortex and other cortical regions in recognition memory and perceptual discrimination.

    Get PDF
    Traditionally, the medial temporal lobe (MTL) is thought to be dedicated to declarative memory. Recent evidence challenges this view, suggesting that perirhinal cortex (PrC), which interfaces the MTL with the ventral visual pathway, supports highly integrated object representations in recognition memory and perceptual discrimination. Even with comparable representational demands, perceptual and memory tasks differ in numerous task demands and the subjective experience they evoke. Here, we tested whether such differences are reflected in distinct patterns of connectivity between PrC and other cortical regions, including differential involvement of prefrontal control processes. We examined functional magnetic resonance imaging data for closely matched perceptual and recognition memory tasks for faces that engaged right PrC equivalently. Multivariate seed analyses revealed distinct patterns of interactions: Right ventrolateral prefrontal and posterior cingulate cortices exhibited stronger functional connectivity with PrC in recognition memory; fusiform regions were part of the pattern that displayed stronger functional connectivity with PrC in perceptual discrimination. Structural equation modeling revealed distinct patterns of effective connectivity that allowed us to constrain interpretation of these findings. Overall, they demonstrate that, even when MTL structures show similar involvement in recognition memory and perceptual discrimination, differential neural mechanisms are reflected in the interplay between the MTL and other cortical regions

    Revisiting Cognitive and Neuropsychological Novelty Effects

    No full text
    Recent proposals have attributed a key role to novelty in the formation of new episodic memories. These proposals are based on evidence of enhanced memory and greater metabolic activity in the hippocampus in response to novel relative to familiar materials. However, such novelty effects are incongruous with long-standing observations that familiar items and lists are associated with better memory than novel ones. In four experiments, I explored possible reasons for this apparent discrepancy. In Experiment 1, I directly tested whether previously observed novelty effects were the result of novelty, discrimination demands, or both. I used linguistic materials (proverbs) to replicate the novelty effect but found it occurred only when familiar items were subject to source confusion. In Experiment 2, to examine better how novelty influences episodic memory, I used experimentally familiar, pre-experimentally familiar, and novel proverbs in a paradigm designed to overcome discrimination demand confounds. Memory was better for both types of familiar proverbs. These cognitive results indicate that familiarity, not novelty, leads to better episodic memory for studied items, regardless of whether familiarity is experimentally induced or based on prior knowledge. I also conducted two fMRI experiments to evaluate the neural correlates of the encoding of novel and familiar forms of information. In Experiment 3, I compared the neural encoding correlates of source memory for novel and familiar visual scenes using fMRI. Replicating previous neuroimaging studies, I observed an anterior novelty-sensitive region of the hippocampus specialized in novelty encoding. Unlike past studies, I also probed for familiarity-encoding regions and identified such regions in the posterior hippocampus. I replicated this pattern in Experiment 4 using proverbs as stimuli. As in Experiment 2, I found the effect held whether familiarity was based on prior knowledge or experimental induction. In both fMRI experiments, anterior and posterior hippocampal regions were functionally connected with different large-scale networks, helping to explain local variation in hippocampal functional specialization in terms of different neural contexts. Together, these experiments show that stimulus familiarity enhances episodic memory for materials, and that novelty is processed differently, not preferentially, in the hippocampus. A new model of hippocampal novelty processing is proposed.Ph

    Brain meta-state transitions demarcate thoughts across task contexts exposing the mental noise of trait neuroticism

    No full text
    Explicit self-reflection is unreliable for measuring thoughts. Here, the authors use brain data to implicitly pinpoint transitions between thoughts and find thought turnover to be reliably predicted by narrative events during movie-viewing, as well as by greater trait neuroticism at rest

    Sleep Contributions to Hippocampal Consolidation of Gist and Detail Memory

    No full text

    Hippocampal correlates of reading comprehension, word recognition, and typed free recall

    No full text
    An investigation into reading comprehension and its behavioural and neuroanatomical predictors
    corecore