33 research outputs found

    Extensive Reorganization of Behavior Accompanies Ontogeny of Aggression in Male Flesh Flies

    Get PDF
    Aggression, costly in both time and energy, is often expressed by male animals in defense of valuable resources such as food or potential mates. Here we present a new insect model system for the study of aggression, the male flesh fly Sarcophaga crassipalpis, and ask whether there is an ontogeny of aggression that coincides with reproductive maturity. After establishing that reproductive maturity occurs by day 3 of age (post-eclosion), we examined the behavior of socially isolated males from different age cohorts (days 1, 2, 3, 4, and 6) upon introduction, in a test arena, with another male of the same age. The results show a pronounced development of aggression with age. The change from relative indifference to heightened aggression involves a profound increase in the frequency of high-intensity aggressive behaviors between days 1 and 3. Also noteworthy is an abrupt increase in the number of statistically significant transitions involving these full-contact agonistic behaviors on day 2. This elevated activity is trimmed back somewhat by day 3 and appears to maintain a stable plateau thereafter. No convincing evidence was found for escalation of aggression nor the establishment of a dominance relationship over the duration of the encounters. Despite the fact that aggressive interactions are brief, lasting only a few seconds, a major reorganization in the relative proportions of four major non-aggressive behaviors (accounting for at least 96% of the total observation time for each age cohort) accompanies the switch from low to high aggression. A series of control experiments, with single flies in the test arenas, indicates that these changes occur in the absence of the performance of aggressive behaviors. This parallel ontogeny of aggressive and non-aggressive behaviors has implications for understanding how the entire behavioral repertoire may be organized and reorganized to accommodate the needs of the organism

    Residue Propensities, Discrimination and Binding Site Prediction of Adenine and Guanine Phosphates

    Get PDF
    Background: Adenine and guanine phosphates are involved in a number of biological processes such as cell signaling, metabolism and enzymatic cofactor functions. Binding sites in proteins for these ligands are often detected by looking for a previously known motif by alignment based search. This is likely to miss those where a similar binding site has not been previously characterized and when the binding sites do not follow the rule described by predefined motif. Also, it is intriguing how proteins select between adenine and guanine derivative with high specificity. Results: Residue preferences for AMP, GMP, ADP, GDP, ATP and GTP have been investigated in details with additional comparison with cyclic variants cAMP and cGMP. We also attempt to predict residues interacting with these nucleotides using information derived from local sequence and evolutionary profiles. Results indicate that subtle differences exist between single residue preferences for specific nucleotides and taking neighbor environment and evolutionary context into account, successful models of their binding site prediction can be developed. Conclusion: In this work, we explore how single amino acid propensities for these nucleotides play a role in the affinity and specificity of this set of nucleotides. This is expected to be helpful in identifying novel binding sites for adenine and guanine phosphates, especially when a known binding motif is not detectable

    Residue propensities, discrimination and binding site prediction of adenine and guanine phosphates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adenine and guanine phosphates are involved in a number of biological processes such as cell signaling, metabolism and enzymatic cofactor functions. Binding sites in proteins for these ligands are often detected by looking for a previously known motif by alignment based search. This is likely to miss those where a similar binding site has not been previously characterized and when the binding sites do not follow the rule described by predefined motif. Also, it is intriguing how proteins select between adenine and guanine derivative with high specificity.</p> <p>Results</p> <p>Residue preferences for AMP, GMP, ADP, GDP, ATP and GTP have been investigated in details with additional comparison with cyclic variants cAMP and cGMP. We also attempt to predict residues interacting with these nucleotides using information derived from local sequence and evolutionary profiles. Results indicate that subtle differences exist between single residue preferences for specific nucleotides and taking neighbor environment and evolutionary context into account, successful models of their binding site prediction can be developed.</p> <p>Conclusion</p> <p>In this work, we explore how single amino acid propensities for these nucleotides play a role in the affinity and specificity of this set of nucleotides. This is expected to be helpful in identifying novel binding sites for adenine and guanine phosphates, especially when a known binding motif is not detectable.</p

    Introduction to STATISTICS in a Biological Context

    No full text
    This is a textbook written for undergraduate students in biology or health sciences in an introductory statistics course.https://dc.etsu.edu/etsu_books/1061/thumbnail.jp

    Effects of Environmental Factors on Circadian Activity in the Flesh Fly, Sarcophaga Crassipalpis

    No full text
    The diel locomotor activity patterns of wandering larvae in the flesh fly, Sarcophaga crassipalpis Macquart (Diptera: Sarcophagidae), were examined using a novel apparatus and shown to be primarily diurnal, but with a minority (37%) showing nocturnal activity. In response to the environmental stress of heat shock, a significantly larger proportion (72%) of the larvae became nocturnal. In comparison, adult circadian activity also was predominantly diurnal, but not correlated with the larval activity patterns. In addition, adult patterns showed age-related changes in entrainment and free running period. Finally, the phase of circadian-gated adult eclosion was shown to be entrained by a 3-day exposure to light-dark cycles delivered prior to pupariation, with the phase maintained throughout pupal-adult metamorphosis under constant dark conditions. These results demonstrate that environmental changes may have profound effects on the expression of 24-h activity patterns and circadian rhythms during different life stages throughout development

    Redundant Complexity: A Critical Analysis of Intelligent Design in Biochemistry

    No full text
    Biological systems exhibit complexity at all levels of organization. It has recently been argued by Michael Behe that at the biochemical level a type of complexity exists -irreducible complexity - that cannot possibly have arisen as the result of natural, evolutionary processes and must instead be the product of (supernatural) intelligent design. Recent work on self-organizing chemical reactions calls into question Behe\u27s analysis of the origins of biochemical complexity. His central interpretative metaphor for biochemical complexity, that of the well-designed mousetrap that ceases to function if critical parts are absent, is undermined by the observation that typical biochemical systems exhibit considerable redundancy and overlap of function. Real biochemical systems, we argue, manifest redundant complexity - a characteristic result of evolutionary processes

    Effects of Gender, Age, and Nutrition on Circadian Locomotor Activity Rhythms in the Flesh Fly Sarcophaga crassipalpis

    No full text
    In many animal species, circadian rhythms of behavior are not constant throughout the lifetime of the individual but rather exhibit at least some degree of plasticity. In the present study, we have examined the potential influences of gender, age, and nutrition (presence or absence of liver) on the expression of circadian locomotor activity rhythms in the flesh fly Sarcophaga crassipalpis. We found no significant differences in endogenous circadian period under constant dark conditions with respect to gender, nutrition, or age for the duration of our experiments. On the other hand, both male and female flesh flies, as expected, were predominantly diurnal under light-dark cycles, but the pattern of entrainment differed between the sexes. Females also displayed higher activity levels than males. Also, in contrast with males, female activity levels increased with age. Moreover, females exhibited an extraordinary, but transient (one to three days), departure from diurnality which we characterize as “extended dark activity” (EDA). This phenomenon appeared as a continuous bout of locomotor activity that extended at least three hours into the early half of the dark phase at levels at least twice the median of the overall locomotor activity for the individual fly. EDA occurred as an age-dependent response to liver consumption, never appearing prior to day 4 post-eclosion but, thereafter, transpiring within one or two days after a 48-h exposure to liver. These results suggest a linkage between physiological events associated with egg provisioning and locomotor activity in the anautogenous flesh fly. Furthermore, our findings identify the existence of multiple influences on the expression of circadian clock-regulated behavior
    corecore