8 research outputs found

    Testing the Hydrogen Peroxide-Water Hypothesis for Life on Mars with the TEGA instrument on the Phoenix Lander

    Full text link
    Since Viking has conducted its life detection experiments on Mars, many missions have enhanced our knowledge about the environmental conditions on the Red Planet. However, the Martian surface chemistry and the Viking lander results remain puzzling. Non-biological explanations that favor a strong inorganic oxidant are currently favored (e.g., Mancinelli, 1989; Quinn and Zent, 1999; Klein, 1999, Yen et al., 2000), but problems remain regarding the life time, source, and abundance of that oxidant to account for the Viking observations (Zent and McKay, 1994). Alternatively, a hypothesis favoring the biological origin of a strong oxidizer has recently been advanced (Houtkooper and Schulze-Makuch, 2007). Here, we report about laboratory experiments that simulate the experiments to be conducted by the Thermal and Evolved Gas Analyzer (TEGA) instrument of the Phoenix lander, which is to descend on Mars in May 2008. Our experiments provide a baseline for an unbiased test for chemical versus biological responses, which can be applied at the time the Phoenix Lander transmits its first results from the Martian surface.Comment: 11 pages and 3 figure

    Biological Oxidant and Life Detection (BOLD) mission: an outline for a new mission to Mars

    Get PDF
    The Viking mission was the only mission to date that conducted life detection experiments. It revealed ambiguous and still controversial results. New findings and hypotheses urge a re-evaluation of the Viking results and a re-evaluation of the evidence for the possible presence of life on Mars in general. Recent findings of abundant water ice on Mars, the presence of liquid contemporary water on the Martian surface, and the detection of methane in the Martian atmosphere further support this possibility. Current missions to be launched focus on habitability considerations (e.g., NASA Phoenix, NASA Mars Science Laboratory), but shy away from directly testing for life on Mars, with the potential exception of the ESA ExoMars mission. If these currently planned missions collect positive evidence toward habitability and the possible existence of extraterrestrial (microbial) life on Mars, it would be timely to propose a new mission to Mars with a strong life detection component. We propose such a mission called BOLD: Biological Oxidant and Life Detection Mission. The BOLD mission objective would be to quantify the amount of hydrogen peroxide existing in the Martian soil and to test for processes typically associated with life. Six landing packages are projected to land on Mars that include a limited power supply, a set of oxidant and life detection experiments, and a transmitter, which is able to transmit information via an existing Mars orbiter back to Earth

    Biological Oxidant and Life Detection (BOLD) mission: an outline for a new mission to Mars

    Get PDF
    The Viking mission was the only mission to date that conducted life detection experiments. It revealed ambiguous and still controversial results. New findings and hypotheses urge a re-evaluation of the Viking results and a re-evaluation of the evidence for the possible presence of life on Mars in general. Recent findings of abundant water ice on Mars, the presence of liquid contemporary water on the Martian surface, and the detection of methane in the Martian atmosphere further support this possibility. Current missions to be launched focus on habitability considerations (e.g., NASA Phoenix, NASA Mars Science Laboratory), but shy away from directly testing for life on Mars, with the potential exception of the ESA ExoMars mission. If these currently planned missions collect positive evidence toward habitability and the possible existence of extraterrestrial (microbial) life on Mars, it would be timely to propose a new mission to Mars with a strong life detection component. We propose such a mission called BOLD: Biological Oxidant and Life Detection Mission. The BOLD mission objective would be to quantify the amount of hydrogen peroxide existing in the Martian soil and to test for processes typically associated with life. Six landing packages are projected to land on Mars that include a limited power supply, a set of oxidant and life detection experiments, and a transmitter, which is able to transmit information via an existing Mars orbiter back to Earth

    A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted

    Get PDF
    The adaptability of extremophiles on Earth raises the question of what strategies putative life might have used to adapt to the present conditions on Mars. Here, we hypothesize that organisms might utilize a water–hydrogen peroxide (H2O–H2O2) mixture rather than water as an intracellular liquid. This adaptation would have the particular advantages in the Martian environment of providing a low freezing point, a source of oxygen and hygroscopicity. The findings by the Viking experiments are reinterpreted in light of this hypothesis. Our conclusion is that the hitherto mysterious oxidant in the Martian soil, which evolves oxygen when humidified, might be H2O2 of biological origin. This interpretation has consequences for site selection for future missions to search for life on Mars

    The Physical, Chemical and Physiological Limits of Life

    No full text
    Life on Earth displays an incredible diversity in form and function, which allows it to survive not only physical extremes, but also periods of time when it is exposed to non-habitable conditions. Extreme physiological adaptations to bridge non-habitable conditions include various dormant states, such as spores or tuns. Here, we advance the hypothesis that if the environmental conditions are different on some other planetary body, a deviating biochemistry would evolve with types of adaptations that would manifest themselves with different physical and chemical limits of life. In this paper, we discuss two specific examples: putative life on a Mars-type planet with a hydrogen peroxide-water solvent and putative life on a Titan-type planetary body with liquid hydrocarbons as a solvent. Both examples would have the result of extending the habitable envelope of life in the universe

    The Biological Oxidant and Life Detection (BOLD) mission: A proposal for a mission to Mars

    No full text
    The next step in the exploration of Mars should include a strong and comprehensive life detection component. We propose a mission called BOLD: Biological Oxidant and Life Detection mission. The scientific objectives of the BOLD mission are to characterize habitability of the martian surface and to search for evidence of extinct or extant life. In contrast to the Viking mission, which was designed to detect heterotrophic life on Mars, the BOLD mission incorporates a more comprehensive search for autotrophic microorganisms, as well as detecting a variety of biomarkers and understanding their environment. Six miniature landers are envisioned for BOLD that utilize either an orbital (e.g. Viking) or direct entry (e.g., MER, Phoenix) mission architecture. The number of landers will provide mission redundancy, and each will incorporate a Mars Soil Analyzer, a Multispectral Microscopic Imager, a Nanopore-ARROW that detects biopolymers with single molecule resolution, an Atmospheric Structure and Surface Environment Instrument, a Fluorescent Stain experiment, and a Chirality experiment. A terrain navigation system, coupled with robust propulsion, permits a landing accuracy on the order of meters if required to meet the science objectives. The probes will use existing orbiters for communication relay if the orbiter architecture proves too ambitious
    corecore