2 research outputs found

    A Pronounced Dispersion Effect of Crystalline Silicon Nanoparticles on the Performance and Stability of Polymer:Fullerene Solar Cells

    No full text
    We investigated the dispersion effect of crystalline silicon nanoparticles (SiNP) on the performance and stability of organic solar cells with the bulk heterojunction (BHJ) films of poly­(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C<sub>61</sub>-butyric acid methyl ester (PC<sub>61</sub>BM). To improve the dispersion of SiNP in the BHJ films, we attached octanoic acid (OA) to the SiNP surface via esterification reaction and characterized it with Raman spectroscopy and high-resolution transmission electron microscopy. The OA-attached SiNP (SiNP-OA) showed improved dispersion in chlorobenzene without change of optical absorption, ionization potential and crystal nanostructure of SiNP. The device performance was significantly deteriorated upon high loading of SiNP (10 wt %), whereas relatively good performance was maintained without large degradation in the case of SiNP-OA. Compared to the control device (P3HT:PC<sub>61</sub>BM), the device performance was improved by adding 2 wt % SiNP-OA, but it was degraded by adding 2 wt % SiNP. In particular, the device stability (lifetime under short time exposure to 1 sun condition) was improved by adding 2 wt % SiNP-OA even though it became significantly decreased by adding 2 wt % SiNP. This result suggests that the dispersion of nanoparticles greatly affects the device performance and stability (lifetime)

    Doping Effect of Organosulfonic Acid in Poly(3-hexylthiophene) Films for Organic Field-Effect Transistors

    No full text
    We attempted to dope poly­(3-hexylthiophene) (P3HT) with 2-ethylbenzenesulfonic acid (EBSA), which has good solubility in organic solvents, in order to improve the performance of organic field effect transistors (OFET). The EBSA doping ratio was varied up to 1.0 wt % because the semiconducting property of P3HT could be lost by higher level doping. The doping reaction was confirmed by the emerged absorption peak at the wavelength of ∼970 nm and the shifted S2p peak (X-ray photoelectron spectroscopy), while the ionization potential and nanostructure of P3HT films was slightly affected by the EBSA doping. Interestingly, the EBSA doping delivered significantly improved hole mobility because of the greatly enhanced drain current of OFETs by the presence of the permanently charged parts in the P3HT chains. The hole mobility after the EBSA doping was increased by the factor of 55–86 times depending on the regioregularity at the expense of low on/off ratio in the case of unoptimized devices, while the optimized devices showed ∼10 times increased hole mobility by the 1.0 wt % EBSA doping with the greatly improved on/off ratio even though the source and drain electrodes were made using relatively cheaper silver instead of gold
    corecore