31 research outputs found

    Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli

    Get PDF
    Isopentenyl pyrophosphate (IPP) toxicity presents a challenge in engineered microbial systems since its formation is unavoidable in terpene biosynthesis. In this work, we develop an experimental platform to study IPP toxicity in isoprenol-producing Escherichia coli. We first characterize the physiological response to IPP accumulation, demonstrating that elevated IPP levels are linked to growth inhibition, reduced cell viability, and plasmid instability. We show that IPP toxicity selects for pathway "breakage", using proteomics to identify a reduction in phosphomevalonate kinase (PMK) as a probable recovery mechanism. Next, using multi-omics data, we demonstrate that endogenous E. coli metabolism is globally impacted by IPP accumulation, which slows nutrient uptake, decreases ATP levels, and perturbs nucleotide metabolism. We also observe the extracellular accumulation of IPP and present preliminary evidence that IPP can be transported by E. coli, findings that might be broadly relevant for the study of isoprenoid biosynthesis. Finally, we discover that IPP accumulation leads to the formation of ApppI, a nucleotide analog of IPP that may contribute to observed toxicity phenotypes. This comprehensive assessment of IPP stress suggests potential strategies for the alleviation of prenyl diphosphate toxicity and highlights possible engineering targets for improved IPP flux and high titer isoprenoid production

    An Automated Phenotype-Driven Approach (GeneForce) for Refining Metabolic and Regulatory Models

    Get PDF
    Integrated constraint-based metabolic and regulatory models can accurately predict cellular growth phenotypes arising from genetic and environmental perturbations. Challenges in constructing such models involve the limited availability of information about transcription factorβ€”gene target interactions and computational methods to quickly refine models based on additional datasets. In this study, we developed an algorithm, GeneForce, to identify incorrect regulatory rules and gene-protein-reaction associations in integrated metabolic and regulatory models. We applied the algorithm to refine integrated models of Escherichia coli and Salmonella typhimurium, and experimentally validated some of the algorithm's suggested refinements. The adjusted E. coli model showed improved accuracy (∼80.0%) for predicting growth phenotypes for 50,557 cases (knockout mutants tested for growth in different environmental conditions). In addition to identifying needed model corrections, the algorithm was used to identify native E. coli genes that, if over-expressed, would allow E. coli to grow in new environments. We envision that this approach will enable the rapid development and assessment of genome-scale metabolic and regulatory network models for less characterized organisms, as such models can be constructed from genome annotations and cis-regulatory network predictions

    Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques

    Get PDF
    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering

    Understanding Infrastructure Resiliency in Chennai, India Using Twitter’s Geotags and Texts: A Preliminary Study

    No full text
    Geotagging is the process of labeling data and information with geographical identification metadata, and text mining refers to the process of deriving information from text through data analytics. Geotagging and text mining are used to mine rich sources of social media data, such as video, website, text, and Quick Response (QR) code. They have been frequently used to model consumer behaviors and market trends. This study uses both techniques to understand the resilience of infrastructure in Chennai, India using data mined from the 2015 flood. This paper presents a conceptual study on the potential use of social media (Twitter in this case) to better understand infrastructure resiliency. Using feature-extraction techniques, the research team extracted Twitter data from tweets generated by the Chennai population during the flood. First, this study shows that these techniques are useful in identifying locations, defects, and failure intensities of infrastructure using the location metadata from geotags, words containing the locations, and the frequencies of tweets from each location. However, more efforts are needed to better utilize the texts generated from the tweets, including a better understanding of the cultural contexts of the words used in the tweets, the contexts of the words used to describe the incidents, and the least frequently used words. Keywords: Social media, Flooding, Engineering desig

    Advances in genome-scale metabolic models of industrially important fungi

    No full text
    Many fungal species have been used industrially for production of biofuels and bioproducts. Developing strains with better performance in biomanufacturing contexts requires a systematic understanding of cellular metabolism. Genome-scale metabolic models (GEMs) offer a comprehensive view of interconnected pathways and a mathematical framework for downstream analysis. Recently, GEMs have been developed or updated for several industrially important fungi. Some of them incorporate enzyme constraints, enabling improved predictions of cell states and proteome allocation. Here, we provide an overview of these newly developed GEMs and computational methods that facilitate construction of enzyme-constrained GEMs and utilize flux predictions from GEMs. Furthermore, we highlight the pivotal roles of these GEMs in iterative design–build–test–learn cycles, ultimately advancing the field of fungal biomanufacturing
    corecore