150 research outputs found

    Development of Web GIS-Based VFSMOD System with Three Modules for Effective Vegetative Filter Strip Design

    Get PDF
    In recent years, Non-Point Source Pollution has been rising as a significant environmental issue. The sediment-laden water problem is causing serious impacts on river ecosystems not only in South Korea but also in most countries. The vegetative filter strip (VFS) has been thought to be one of the most effective methods to reduce the transport of sediment to down-gradient area. However, the effective width of the VFS first needs to be determined before VFS installation in the field. To provide an easy-to-use interface with a scientific VFS modeling engine, the Web GIS-based VFSMOD system was developed in this study. The Web GIS-based VFSMOD uses the UH and VFSM executable programs from the VFSMOD-w model as core engines to simulate rainfall-runoff and sediment trapping. To provide soil information for a point of interest, the Google Map interface to the MapServer soil database system was developed using the Google Map API, Javascript, Perl/CGI, and Oracle DB programming. Three modules of the Web GIS-based VFSMOD system were developed for various VFS designs under single storm, multiple storm, and long-term period scenarios. These modules in the Web GIS-based VFSMOD system were applied to the study watershed in South Korea and these were proven as efficient tools for the VFS design for various purposes

    Development of Web GIS-Based VFSMOD System with Three Modules for Effective Vegetative Filter Strip Design

    Get PDF
    In recent years, Non-Point Source Pollution has been rising as a significant environmental issue. The sediment-laden water problem is causing serious impacts on river ecosystems not only in South Korea but also in most countries. The vegetative filter strip (VFS) has been thought to be one of the most effective methods to reduce the transport of sediment to down-gradient area. However, the effective width of the VFS first needs to be determined before VFS installation in the field. To provide an easy-to-use interface with a scientific VFS modeling engine, the Web GIS-based VFSMOD system was developed in this study. The Web GIS-based VFSMOD uses the UH and VFSM executable programs from the VFSMOD-w model as core engines to simulate rainfall-runoff and sediment trapping. To provide soil information for a point of interest, the Google Map interface to the MapServer soil database system was developed using the Google Map API, Javascript, Perl/CGI, and Oracle DB programming. Three modules of the Web GIS-based VFSMOD system were developed for various VFS designs under single storm, multiple storm, and long-term period scenarios. These modules in the Web GIS-based VFSMOD system were applied to the study watershed in South Korea and these were proven as efficient tools for the VFS design for various purposes

    Avoid Contamination in Soybean (Glycine Max, L. [Merrill]) Microspores Culture

    Full text link
    Microspore culture is done to obtain pure strains. The purpose of soybean microspore culture to obtainquality seeds. Two important step that must be done is isolation of microspores in starvation medium andsubculture into embryogenesis medium. Many factors contributing to the contamination of soybeanmicrospore culture. Contamination in the B medium temperature 34 0C is more common than 4 0C. Vulnerableto contamination because of embryogenesis medium rich in nutrients. Bacterial contaminationcan be caused by internal contaminants such as shape of the anther. Other internal contaminants thatcause diseases such as fungi Colletotrichum truncatum and Phakopsora pachyrhizi. Antagonistic fungiwhich contaminate cultures that Trichoderma spp., Alternaria spp., Fusarium spp. Handling of contaminationis done by selecting the appropriate methods in order to remain viable microspores. Sterilization soybeanflower buds with 20% Tween for 10 minutes and then rinsed with distilled water. Moreover sterilizationwith 4% Hg Cl2 and 10% NaOCl for 10 minutes, rinsed with distilled water times, followed by 96%alcohol for 1 minute, can press up to 70% contamination

    Empagliflozin Contributes to Polyuria via Regulation of Sodium Transporters and Water Channels in Diabetic Rat Kidneys

    Get PDF
    Besides lowering glucose, empagliflozin, a selective sodium-glucose cotransporter-2 (SGLT2) inhibitor, have been known to provide cardiovascular and renal protection due to effects on diuresis and natriuresis. However, the natriuretic effect of SGLT2 inhibitors has been reported to be transient, and long-term data related to diuretic change are sparse. This study was performed to assess the renal effects of a 12-week treatment with empagliflozin (3 mg/kg) in diabetic OLETF rats by comparing it with other antihyperglycemic agents including lixisenatide (10 μg/kg), a glucagon-like peptide receptor-1 agonist, and voglibose (0.6 mg/kg), an α-glucosidase inhibitor. At 12 weeks of treatment, empagliflozin-treated diabetic rats produced still high urine volume and glycosuria, and showed significantly higher electrolyte-free water clearance than lixisenatide or voglibose-treated diabetic rats without significant change of serum sodium level and fractional excretion of sodium. In empagliflozin-treated rats, renal expression of Na+-Cl- cotransporter was unaltered, and expressions of Na+/H+ exchanger isoform 3, Na+-K+-2Cl- cotransporter, and epithelial Na+ channel were decreased compared with control diabetic rats. Empagliflozin increased an expression of aquaporin (AQP)7 but did not affect AQP3 and AQP1 protein expressions in diabetic kidneys. Despite the increased expression in vasopressin V2 receptor, protein and mRNA levels of AQP2 in empagliflozin-treated diabetic kidneys were significantly decreased compared to control diabetic kidneys. In addition, empagliflozin resulted in the increased phosphorylation of AQP2 at S261 through the increased cyclin-dependent kinases 1 and 5 and protein phosphatase 2B. These results suggest that empagliflozin may contribute in part to polyuria via its regulation of sodium channels and AQP2 in diabetic kidneys

    Protection of nigral dopaminergic neurons by AAV1 transduction with Rheb(S16H) against neurotoxic inflammation in vivo

    Get PDF
    We recently reported that adeno-associated virus serotype 1 (AAV1) transduction of murine nigral dopaminergic (DA) neurons with constitutively active ras homolog enriched in brain with a mutation of serine to histidine at position 16 [Rheb(S16H)] induced the production of neurotrophic factors, resulting in neuroprotective effects on the nigrostriatal DA system in animal models of Parkinson's disease (PD). To further investigate whether AAV1-Rheb(S16H) transduction has neuroprotective potential against neurotoxic inflammation, which is known to be a potential event related to PD pathogenesis, we examined the effects of Rheb(S16H) expression in nigral DA neurons under a neurotoxic inflammatory environment induced by the endogenous microglial activator prothrombin kringle-2 (pKr-2). Our observations showed that Rheb(S16H) transduction played a role in the neuroprotection of the nigrostriatal DA system against pKr-2-induced neurotoxic inflammation, even though there were similar levels of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1-beta (IL-1 beta), in the AAV1-Rheb(S16H)-treated substantia nigra (SN) compared to the SN treated with pKr-2 alone; the neuroprotective effects may be mediated by the activation of neurotrophic signaling pathways following Rheb(S16H) transduction of nigral DA neurons. We conclude that AAV1-Rheb(S16H) transduction of neuronal populations to activate the production of neurotrophic factors and intracellular neurotrophic signaling pathways may offer promise for protecting adult neurons from extracellular neurotoxic inflammation.1

    Mutations in DDX58, which Encodes RIG-I, Cause Atypical Singleton-Merten Syndrome

    Get PDF
    Singleton-Merten syndrome (SMS) is an autosomal-dominant multi-system disorder characterized by dental dysplasia, aortic calcification, skeletal abnormalities, glaucoma, psoriasis, and other conditions. Despite an apparent autosomal-dominant pattern of inheritance, the genetic background of SMS and information about its phenotypic heterogeneity remain unknown. Recently, we found a family affected by glaucoma, aortic calcification, and skeletal abnormalities. Unlike subjects with classic SMS, affected individuals showed normal dentition, suggesting atypical SMS. To identify genetic causes of the disease, we performed exome sequencing in this family and identified a variant (c.1118A>C [p.Glu373Ala]) of DDX58, whose protein product is also known as RIG-I. Further analysis of DDX58 in 100 individuals with congenital glaucoma identified another variant (c.803G>T [p.Cys268Phe]) in a family who harbored neither dental anomalies nor aortic calcification but who suffered from glaucoma and skeletal abnormalities. Cys268 and Glu373 residues of DDX58 belong to ATP-binding motifs I and II, respectively, and these residues are predicted to be located closer to the ADP and RNA molecules than other nonpathogenic missense variants by protein structure analysis. Functional assays revealed that DDX58 alterations confer constitutive activation and thus lead to increased interferon (IFN) activity and IFN-stimulated gene expression. In addition, when we transduced primary human trabecular meshwork cells with c.803G>T (p.Cys268Phe) and c.1118A>C (p.Glu373Ala) mutants, cytopathic effects and a significant decrease in cell number were observed. Taken together, our results demonstrate that DDX58 mutations cause atypical SMS manifesting with variable expression of glaucoma, aortic calcification, and skeletal abnormalities without dental anomalies

    Mutations in DDX58, which Encodes RIG-I, Cause Atypical Singleton-Merten Syndrome

    Get PDF
    Singleton-Merten syndrome (SMS) is an autosomal-dominant multi-system disorder characterized by dental dysplasia, aortic calcification, skeletal abnormalities, glaucoma, psoriasis, and other conditions. Despite an apparent autosomal-dominant pattern of inheritance, the genetic background of SMS and information about its phenotypic heterogeneity remain unknown. Recently, we found a family affected by glaucoma, aortic calcification, and skeletal abnormalities. Unlike subjects with classic SMS, affected individuals showed normal dentition, suggesting atypical SMS. To identify genetic causes of the disease, we performed exome sequencing in this family and identified a variant (c.1118A>C [p.GLu373Ala]) of DDX58, whose protein product is also known as RIG-I. Further analysis of DDX58 in 100 individuals with congenital glaucoma identified another variant (c.803G>T [p.Cys268Phe]) in a family who harbored neither dental anomalies nor aortic calcification but who suffered from glaucoma and skeletal abnormalities. Cys268 and Glu373 residues of DDX58 belong to ATP-binding motifs I and II, respectively, and these residues are predicted to be located closer to the ADP and RNA molecules than other nonpathogenic missense variants by protein structure analysis. Functional assays revealed that DDX58 alterations confer constitutive activation and thus lead to increased interferon (IFN) activity and IFN-stimulated gene expression. In addition, when we transduced primary human trabecular meshwork cells with c.803G>T (p.Cys268Phe) and c.1118A>C (p.Glu373A1a) mutants, cytopathic effects and a significant decrease in cell number were observed. Taken together, our results demonstrate that DDX58 mutations cause atypical SMS manifesting with variable expression of glaucoma, aortic calcification, and skeletal abnormalities without dental anomalies.X116452Ysciescopu

    Motion style acupuncture treatment (MSAT) for acute low back pain with severe disability: a multicenter, randomized, controlled trial protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acupuncture is widely-used to treat patients with low back pain, despite insufficient evidence of the technique's efficacy for acute back pain. Motion style acupuncture treatment (MSAT) is a non-traditional acupuncture treatment requiring a patient to exercise while receiving acupuncture. In Korea, MSAT is used to reduce musculoskeletal pain and improve functional status. The study aims to evaluate the effect of MSAT on acute low back pain with severe disability.</p> <p>Methods/Design</p> <p>This study is a multicenter, randomized, active-controlled trial with two parallel arms. Participants with acute low back pain and severe functional disability, defined as an Oswestry Disability Index (ODI) value > 60%, will be randomly allocated to the acupuncture group and the nonsteroidal anti-inflammatory drug (NSAID) injection group. The acupuncture group will receive MSAT and the NSAID injection group will receive an intramuscular injection of diclofenac. All procedures will be limited to one session and the symptoms before and after treatment will be measured by assessors blinded to treatment allocation. The primary outcome will be measured at 30 minutes after treatment using the numerical rating scale (NRS) of low back pain while the patient is moving. Secondary outcomes will be measured at 30 minutes after treatment using the NRS of leg pain, ODI, patient global impression of change, range of motion (ROM) of the lumbar spine, and degrees of straight leg raising (SLR). Post-treatment follow-up will be performed to measure primary and secondary outcomes with the exception of ROM and SLR at 2, 4, and 24 weeks after treatment.</p> <p>Discussion</p> <p>The results of this trial will be discussed.</p> <p>Trial Registration</p> <p>ClinicalTrial.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01315561">NCT01315561</a></p

    Effects of intra-articular SHINBARO treatment on monosodium iodoacetate-induced osteoarthritis in rats

    Get PDF
    BACKGROUND: SHINBARO is a refined herbal formulation used to treat inflamed lesions and bone diseases. This study aimed to investigate the anti-osteoarthritic activities of intra-articular administration of SHINBARO and determine its underlying molecular mechanism in a monosodium iodoacetate (MIA)-induced osteoarthritis rat model. METHODS: Male Sprague–Dawley rats received a single intra-articular injection of MIA into the infrapatellar ligament of the right knee. Subsequently, the rats were treated with normal saline, SHINBARO, and diclofenac once daily for 21 days. Rats treated with normal saline, but not MIA, comprised the control group. Histological changes in the femur of the MIA-induced osteoarthritis rat model were observed by micro-computed tomography scanning and staining with hematoxylin and eosin, and safranin-O fast green. Serum levels of PGE(2) and anti-type II collagen antibodies in the MIA-induced osteoarthritis rat model were measured using commercial kits. Protein levels of inflammatory enzymes (iNOS, COX-2), pro-inflammatory cytokines (TNF-α, IL-1β), and inflammatory mediators (NF-κB, IκB) in cartilaginous tissues were determined by western blot analysis. RESULTS: Intra-articular administration of SHINBARO (IAS) at 20 mg/kg remarkably restrained the decrease in bone volume/total volume, being 28 % (P = 0.0001) higher than that in the vehicle-treated MIA group. IAS (2, 10, and 20 mg/kg) treatment significantly recovered the mean number of objects values with increased percentage changes of 13.5 % (P = 0.147), 27.5 % (P = 0.028), and 44.5 % (P = 0.031), respectively, compared with the vehicle-treated MIA group. The serum level of PGE(2) in the IAS group at 20 mg/kg was markedly inhibited by 60.6 % (P = 0.0007) compared with the vehicle-treated MIA group, and the anti-collagen type II antibody level in the IAS group was reduced in a dose-dependent manner. IAS (20 mg/kg) effectively suppressed the induction of inflammation-mediated enzymes (iNOS and COX-2) and pro-inflammatory cytokines (TNF-α and IL-1β). IAS treatment also downregulated the NF-κB level and increased the IκB-α level in the MIA- induced osteoarthritis rat model. CONCLUSION: SHINBARO inhibited PGE(2) and anti-type II collagen antibody production and modulated the balance of inflammatory enzymes, mediators, and cytokines in the MIA-induced osteoarthritis rat model. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13020-016-0089-6) contains supplementary material, which is available to authorized users
    corecore