2,224 research outputs found

    Study of the relationship between indoor daylight environments and patient average length of stay (ALOS) in healthcare facilities

    Get PDF
    This study investigates how indoor daylight environments affect patient Average Length of Stay (ALOS), by evaluating and analyzing daylight levels in patient rooms in comparison to their ALOS. The patient ALOS data were taken at one general hospital in Inchon, Korea and the other in Bryan, Texas, U.S.A.; physical, environmental and daylighting conditions were assessed at each building site. The gathered data were analyzed using SPSS statistical package to determine the trends in patientsâ length of stay in hospital wards with 95% and 90% statistical significances. The data were categorized based on the orientation of a patient room and were compared between different orientations and types of patient rooms in the same ward of each hospital. Selected hospital wards were classified based on their orientations and types of patient rooms. The other variables considered in the study were: the differences in daylighting environments (illuminance, luminance ration, daylight factor, diversity and uniformity of illuminance), and physical environment properties of the patient rooms of each hospital, and how these affected patient ALOS in both locations (Inchon and Bryan). To analyze the daylighting environment, on-site measurements, RADIANCE simulations and physical scale model measurements were conducted. This study also investigated patientsâ feelings and opinions, and their preferences in daylighting environments with the questionnaire survey. Through this study, three hypotheses were tested and was evidence for the following conclusions. First, there may be a positive relationship between indoor daylight environments and ALOS. Second, seasonal weather differences cause different indoor daylighting levels and may influence the length of patient hospitalization. Third, overall patient satisfaction and reactions to patient rooms may be related with indoor daylight environments. More controllable shading devices, naturally lighted indoor environments, and glare prevention create positive outcomes for patient ALOS and visual comfort. To increase the validity and confidence about the positive effects of daylight on human physiological conditions, further studies are necessary which provide more samples, facilities and other variables. This study was created as a basis for the development of recommendations for designing patient rooms in healthcare facilities and, as a result, should be used to achieve more effective healing environments

    EFFECT OF SEAT TUBE ANGLE ON THE WORK EFFICIENCY OF LOWER LIMB MUSCLES DURING CYCLING

    Get PDF
    The effect of seat tube angle (STA) on work efficiency at lower limb muscle was evaluated during a pedal rotation using inverse dynamic model. Since the target is not professional cyclist, the various seat tube angles of 78, 68, 58 and 48 degrees was investigated. Cycling simulation was performed at 250W and 60rpm. The works of individual muscle of lower limb and the total work was estimated. The result shows that the total work of single leg at seat tube angles of 78, 68, 58 and 48 degrees were 168.1(J), 167.9(J), 168.9(J) and 170.8(J) respectively. In conclusion, the exertion of lower limb for delivering same amount of work to the crank is the smallest at around 72 degree of seat tube angle which mean work efficiency of lower limb is the greates

    Ultraviolet photodepletion spectroscopy of dibenzo-18-crown-6-ether complexes with alkali metal cations

    Get PDF
    Ultraviolet photodepletion spectra of dibenzo-18-crown-6-ether complexes with alkali metal cations (M+-DB18C6, M = Cs, Rb, K, Na, and Li) were obtained in the gas phase using electrospray ionization quadrupole ion-trap reflectron time-of-flight mass spectrometry. The spectra exhibited a few distinct absorption bands in the wavenumber region of 35450−37800 cm^(−1). The lowest-energy band was tentatively assigned to be the origin of the S_0-S_1 transition, and the second band to a vibronic transition arising from the “benzene breathing” mode in conjunction with symmetric or asymmetric stretching vibration of the bonds between the metal cation and the oxygen atoms in DB18C6. The red shifts of the origin bands were observed in the spectra as the size of the metal cation in M^+-DB18C6 increased from Li^+ to Cs^+. We suggested that these red shifts arose mainly from the decrease in the binding energies of larger-sized metal cations to DB18C6 at the electronic ground state. These size effects of the metal cations on the geometric and electronic structures, and the binding properties of the complexes at the S_0 and S_1 states were further elucidated by theoretical calculations using density functional and time-dependent density functional theories

    Automatic classification using concept knowledge of web documents

    Get PDF
    In order to classify web documents, we suggest a method using concept knowledge of category.In our study, the concept relations between keywords are extracted using hyperlink information and after the extracted keywords are classified into each category, these are used as an index.Then TFIDF for each category is extended to determine index weight value.The system is constructed for experimenting and estimating,which is consist of web robot, indexer, concept knowledge database for each category and the document classifier.Our system to be applied the extended TFIDF method shows an accuracy of 88% in automatic classifying of web documents

    Frequency-dependent gating of feedforward inhibition in thalamofrontal synapses

    Get PDF
    Thalamic recruitment of feedforward inhibition is known to enhance the fidelity of the receptive field by limiting the temporal window during which cortical neurons integrate excitatory inputs. Feedforward inhibition driven by the mediodorsal nucleus of the thalamus (MD) has been previously observed, but its physiological function and regulation remain unknown. Accumulating evidence suggests that elevated neuronal activity in the prefrontal cortex is required for the short-term storage of information. Furthermore, the elevated neuronal activity is supported by the reciprocal connectivity between the MD and the medial prefrontal cortex (mPFC). Therefore, detailed knowledge about the synaptic connections during high-frequency activity is critical for understanding the mechanism of short-term memory. In this study, we examined how feedforward inhibition of thalamofrontal connectivity is modulated by activity frequency. We observed greater short-term synaptic depression during disynaptic inhibition than in thalamic excitatory synapses during high-frequency activities. The strength of feedforward inhibition became weaker as the stimulation continued, which, in turn, enhanced the range of firing jitter in a frequency-dependent manner. We postulated that this phenomenon was primarily due to the increased failure rate of evoking action potentials in parvalbumin-expressing inhibitory neurons. These findings suggest that the MD-mPFC pathway is dynamically regulated by an excitatory-inhibitory balance in an activity-dependent manner. During low-frequency activities, excessive excitations are inhibited, and firing is restricted to a limited temporal range by the strong feedforward inhibition. However, during high-frequency activities, such as during short-term memory, the activity can be transferred in a broader temporal range due to the decreased feedforward inhibition. © 2020 The Author(s).1

    Effects of Chung-Pae Inhalation Therapy on a Mouse Model of Chronic Obstructive Pulmonary Disease

    Get PDF
    Chung-pae (CP) inhalation therapy is a method frequently used in Korea to treat lung disease, especially chronic obstructive pulmonary disease (COPD). This study investigated the effects of CP inhalation on a COPD animal model. C57BL/6 mice received porcine pancreatic elastase (PPE) and lipopolysaccharide (LPS) alternately three times for 3 weeks to induce COPD. Then, CP (5 or 20 mg/kg) was administered every 2 h after the final LPS administration. The effect of CP was evaluated by bronchoalveolar lavage (BAL) fluid analysis, histological analysis of lung tissue, and reverse transcription polymerase chain reaction analysis of mRNA of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, and tumor growth factor- (TGF-) β. Intratracheal CP administration reduced the number of leukocytes and neutrophils in BAL fluid, inhibited the histological appearance of lung damage, and decreased the mRNA levels of the proinflammatory cytokines IL-1β, TNF-α, IL-6, and TGF-β. Intratracheal CP administration effectively decreased the chronic inflammation and pathological changes in a PPE- and LPS-induced COPD mouse model. Therefore, we suggest that CP is a promising strategy for COPD

    Homocysteine-induced peripheral microcirculation dysfunction in zebrafish and its attenuation by L-arginine

    Get PDF
    Elevated blood homocysteine (Hcy) level is frequently observed in aged individuals and those with age-related vascular diseases. However, its effect on peripheral microcirculation is still not fully understood. Using in vivo zebrafish model, the degree of Hcy-induced peripheral microcirculation dysfunction is assessed in this study with a proposed dimensionless velocity parameter (V) over bar (CV)/(V) over bar (PCV), where (V) over bar (CV) and (V) over bar (PCV) represent the peripheral microcirculation perfusion and the systemic perfusion levels, respectively. The ratio of the peripheral microcirculation perfusion to the systemic perfusion is largely decreased due to peripheral accumulation of neutrophils, while the systemic perfusion is relatively preserved by increased blood supply from subintestinal vein. Pretreatment with L-arginine attenuates the effects of Hcy on peripheral microcirculation and reduces the peripheral accumulation of neutrophils. Given its convenience, high reproducibility of the observation site, non-invasiveness, and the ease of drug treatment, the present zebrafish model with the proposed parameters will be used as a useful drug screening platform for investigating the pathophysiology of Hcy-induced microvascular diseases.111Ysciescopu
    corecore