61 research outputs found

    G Protein Subunit Dissociation and Translocation Regulate Cellular Response to Receptor Stimulation

    Get PDF
    We examined the role of G proteins in modulating the response of living cells to receptor activation. The response of an effector, phospholipase C-β to M3 muscarinic receptor activation was measured using sensors that detect the generation of inositol triphosphate or diacylglycerol. The recently discovered translocation of Gβγ from plasma membrane to endomembranes on receptor activation attenuated this response. A FRET based G protein sensor suggested that in contrast to translocating Gβγ, non-translocating Gβγ subunits do not dissociate from the αq subunit on receptor activation leading to prolonged retention of the heterotrimer state and an accentuated response. M3 receptors with tethered αq induced differential responses to receptor activation in cells with or without an endogenous translocation capable γ subunit. G protein heterotrimer dissociation and βγ translocation are thus unanticipated modulators of the intensity of a cell's response to an extracellular signal

    Cultivation of Autotrophic Ammonia-Oxidizing Archaea from Marine Sediments in Coculture with Sulfur-Oxidizing Bacteria▿ †

    No full text
    The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and “Candidatus Nitrosopumilus maritimus” (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichment of AOA over ammonia-oxidizing bacteria (AOB) is likely due to the reduced oxygen levels caused by the rapid initial growth of SOB. After biweekly transfers for ca. 20 months, archaeal cells became the dominant prokaryotes (>80%), based on quantitative PCR and fluorescence in situ hybridization analysis. The increase of archaeal 16S rRNA gene copy numbers was coincident with the amount of ammonia oxidized, and expression of the archaeal amoA gene was observed during ammonia oxidation. Bacterial amoA genes were not detected in the enrichment culture. The affinities of these AOA to oxygen and ammonia were substantially higher than those of AOB. [13C]bicarbonate incorporation and the presence and activation of genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle indicated autotrophy during ammonia oxidation. In the enrichment culture, ammonium was oxidized to nitrite by the AOA and subsequently to nitrate by Nitrospina-like bacteria. Our experiments suggest that AOA may be important nitrifiers in low-oxygen environments, such as oxygen-minimum zones and marine sediments

    The TALE homeodomain protein Pbx2 is not essential for development and long-term survival

    No full text
    Pbx2 is one of four mammalian genes that encode closely related TALE homeodomain proteins, which serve as DNA binding partners for a subset of Hox transcription factors. The expression and contributions of Pbx2 to mammalian development remain undefined, in contrast to the essential roles recently established for family members Pbx1 and Pbx3. Here we report that Pbx2 is widely expressed during embryonic development, particularly in neural and epithelial tissues during late gestation. Despite wide Pbx2 expression, mice homozygous mutant for Pbx2 are born at the expected Mendelian frequencies and exhibit no detectable abnormalities in development and organogenesis or reduction of long-term survival. The lack of an apparent phenotype in Pbx2 -/- mice likely reflects functional redundancy, since the Pbx2 protein is present at considerably lower levels than comparable isoforms of Pbx1 and/or Pbx3 in embryonic tissues. In postnatal bone marrow and thymus, however, Pbx2 is the predominant high-molecular-weight (NW)-isoform Pbx protein detectable by immunoblotting. Nevertheless, the absence of Pbx2 has no measurable effect on steady-state hematopoiesis or immune function in adult mice, suggesting possible compensation by low-MW-isoform Pbx proteins present in these tissues. We conclude that the roles of Pbx2 in murine embryonic development, organogenesis, hematopoiesis, immune responses, and long-term survival are not essential
    corecore