24 research outputs found

    LTCC-Based DC-DC Converter for Reduction of Switching Noise and Radiated Emissions

    Get PDF
    In this study, a low-temperature co-fired ceramic (LTCC)-based direct current (DC)-DC converter is proposed for reducing stray inductance and mitigating electromagnetic interference. The dominant radiating loop of the proposed LTCC-based DC-DC converter features a multilayer design, which helps suppress noise sources and reduce radiated emissions. The peak voltage of switching noise for the proposed DC-DC converter at the frequency of 500 kHz is approximately 8.98% lower than that of a conventional DC-DC converter. In addition, the radiated emission level of the proposed DC-DC converter is lower than that of the conventional DC-DC converter. In sum, the proposed LTCC-technology-based multilayer design reduces the peak voltage of switching noise and the radiated emission of the DC-DC converter

    Modulation of Hair Growth Promoting Effect by Natural Products

    No full text
    A large number of people suffer from alopecia or hair loss worldwide. Drug-based therapies using minoxidil and finasteride for the treatment of alopecia are available, but they have shown various side effects in patients. Thus, the use of new therapeutic approaches using bioactive products to reduce the risk of anti-hair-loss medications has been emphasized. Natural products have been used since ancient times and have been proven safe, with few side effects. Several studies have demonstrated the use of plants and their extracts to promote hair growth. Moreover, commercial products based on these natural ingredients have been developed for the treatment of alopecia. Several clinical, animal, and cell-based studies have been conducted to determine the anti-alopecia effects of plant-derived biochemicals. This review is a collective study of phytochemicals with anti-alopecia effects, focusing mainly on the mechanisms underlying their hair-growth-promoting effects

    Ramie Leaf Extracts Suppresses Adipogenic Differentiation in 3T3-L1 Cells and Pig Preadipocytes

    No full text
    The present study was carried out to evaluate the anti-obesity effect of different concentrations of extracts of hot air-dried ramie leaf (HR) and freeze-dried ramie leaf (FR) in 3T3-L1 cells and pig preadipocytes. To analyze the effect on cell proliferation, cells were treated with 25 ÎĽg/mL or 100 ÎĽg/mL HR or FR extract for 2 days. Cell differentiation was evaluated by measuring glycerol-3-phosphate dehydrogenase and lipoprotein lipase (LPL) activities and intracellular triglyceride content. Treatment with either HR or FR extracts inhibited the proliferation of 3T3-L1 cells and pig preadipocytes in a dose-dependent manner. HR extract treatment inhibited the differentiation of both cell types more effectively than FR treatment. The extent of triglyceride accumulation decreased significantly in both cells following either HR or FR treatment. Furthermore, LPL activity significantly decreased after treatment with HR or FR extract. These results indicated that HR and FR extracts may inhibit proliferation and differentiation of 3T3-L1 cells and pig preadipocytes. Further studies are needed to explore the anti-obesity effect of HR and FR extracts

    Lysimachia christinae Hance as an anticancer agent against breast cancer cells

    No full text
    Breast cancer is the most common cancer in women, and metastasis is the leading cause of death in breast cancer patients. Although chemoprevention is widely employed to treat breast cancer, anticancer drugs can cause significant adverse effects. Lysimachia christinae Hance (LH) is a traditional Chinese medicinal plant with diverse therapeutic effects. However, its potential anticancer activity has not been fully investigated in breast cancers to date. Using high-performance liquid chromatography–mass spectrometry, we found that the main constituent of LH extract (LHE) was rutin. Our results indicated that LHE or rutin markedly decreased the proliferation and viability of estrogen receptor (ER)-positive MCF-7 and ER-negative HCC38 human breast cancer cells. LHE treatment induced morphological changes in apoptotic nuclei using 4′,6-diamidino-2-phenylindole (DAPI) staining. Annexin V–fluorescein isothiocyanate (FITC) propidium iodide (PI) staining assay revealed that apoptosis significantly increased in both breast cancer cell types after LHE treatment. Additionally, the expression of poly (ADP-ribose) polymerase (PARP), Bcl-2, and phospho-Akt decreased, while that of cleaved PARP and p53 increased, in both cell types. Furthermore, LHE treatment inhibited epithelial–mesenchymal transition (EMT). LHE treatment significantly upregulated E-cadherin level in MCF-7 and HCC38 cells, while vimentin level was downregulated in HCC38 cells. In addition, transwell and wound-healing assays revealed that LHE or rutin inhibited breast cancer cell migration. Overall, these findings demonstrate that LHE is a promising therapeutic agent that acts by promoting apoptosis and reducing cell proliferation, EMT, and cell migration in ER-positive and ER-negative breast cancer cells

    Reorganization of the microfilament cytoskeleton in anesthetic-treated SH-SY5y cells.

    No full text
    <p>Cells were cultured on glass coverslips and incubated for the indicated times with vehicle or 1 mM sevoflurane and isoflurane. The redistribution of filamentous actin and globular actin was determined by phalloidin–halloidinne aDNAse I-Alexa488 staining and immunofluorescence microscopy. A. Magnification, 400 × (the scale bar represents 50 μm); B. Magnification, 1,000 × (the scale bar represents 20 μm). Similar results were obtained in three independent experiments.</p

    Phosphoproteome Profiling of SH-SY5y Neuroblastoma Cells Treated with Anesthetics: Sevoflurane and Isoflurane Affect the Phosphorylation of Proteins Involved in Cytoskeletal Regulation

    No full text
    <div><p>Inhalation anesthetics are used to decrease the spinal cord transmission of painful stimuli. However, the molecular or biochemical processes within cells that regulate anesthetic-induced responses at the cellular level are largely unknown. Here, we report the phosphoproteome profile of SH-SY5y human neuroblastoma cells treated with sevoflurane, a clinically used anesthetic. Phosphoproteins were isolated from cell lysates and analyzed using two-dimensional gel electrophoresis. The phosphorylation of putative anesthetic-responsive marker proteins was validated using western blot analysis in cells treated with both sevoflurane and isoflurane. A total of 25 phosphoproteins were identified as differentially phosphorylated proteins. These included key regulators that signal cytoskeletal remodeling steps in pathways related to vesicle trafficking, axonal growth, and cell migration. These proteins included the Rho GTPase, Ras-GAP SH3 binding protein, Rho GTPase activating protein, actin-related protein, and actin. Sevoflurane and isoflurane also resulted in the dissolution of F-actin fibers in SH-SY5y cells. Our results show that anesthetics affect the phosphorylation of proteins involved in cytoskeletal remodeling pathways.</p></div

    Typical kinetics of protein phosphorylation regulated in response to sevoflurane treatment in SH-SY5y cells.

    No full text
    <p>The kinetics of phosphorylation changes over time is depicted for selected proteins (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0162214#pone.0162214.t001" target="_blank">Table 1</a>). Each value represents single values from each gel. Lines connect average standardized abundance values. The Y axis represents the log ratio of treatment per control.</p

    Quantification of fluorescence intensity of F-actin and G-actin.

    No full text
    <p>Quantification of fluorescence intensity was performed from 25 randomized districts on culture plates from each treatment group (control, 5, 15, and 30 min). Quantification was performed for four independent experiments. Results were expressed as F-actin activities relative to the one of G-actin and statistical analysis was performed. Results are shown as means ± SD of 100 randomized districts obtained from four independent experiments. Statistical significance was determined using the Student’s <i>t</i>-test compared with the control. Asterisks indicate statistically significant difference between 5, 15, 30 min treatments and control (*<i>p</i> < 0.01, **<i>p</i> < 0.05).</p

    SH-SY5y cell phosphoprotein patterns following treatment with sevoflurane monitored by 2D gel electrophoresis.

    No full text
    <p>SH-SY5y cells were incubated with sevoflurane for 2, 5, 15, or 30 min; harvested and lysed. Intracellular enriched phosphoproteins were analyzed by 2D gel electrophoresis. Right panel: Coomassie Brilliant Blue staining; left panel: ProQ Diamond. Y axes represent the apparent molecular mass (kDa), and X axes represent pH values. Acquired images showed reproducibility of experiments. Data shown are representative of three separate experiments.</p

    Phosphoproteome Profiling of SH-SY5y Neuroblastoma Cells Treated with Anesthetics: Sevoflurane and Isoflurane Affect the Phosphorylation of Proteins Involved in Cytoskeletal Regulation - Table 1

    No full text
    <p>Phosphoproteome Profiling of SH-SY5y Neuroblastoma Cells Treated with Anesthetics: Sevoflurane and Isoflurane Affect the Phosphorylation of Proteins Involved in Cytoskeletal Regulation</p> - Table
    corecore