3 research outputs found

    Strong Exciton–Plasmon Coupling in MoS<sub>2</sub> Coupled with Plasmonic Lattice

    No full text
    We demonstrate strong exciton–plasmon coupling in silver nanodisk arrays integrated with monolayer MoS<sub>2</sub> via angle-resolved reflectance microscopy spectra of the coupled system. Strong exciton–plasmon coupling is observed with the exciton–plasmon coupling strength up to 58 meV at 77 K, which also survives at room temperature. The strong coupling involves three types of resonances: MoS<sub>2</sub> excitons, localized surface plasmon resonances (LSPRs) of individual silver nanodisks and plasmonic lattice resonances of the nanodisk array. We show that the exciton–plasmon coupling strength, polariton composition, and dispersion can be effectively engineered by tuning the geometry of the plasmonic lattice, which makes the system promising for realizing novel two-dimensional plasmonic polaritonic devices

    Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS<sub>2</sub> Integrated with Plasmonic Nanoantenna Array

    No full text
    The manipulation of light-matter interactions in two-dimensional atomically thin crystals is critical for obtaining new optoelectronic functionalities in these strongly confined materials. Here, by integrating chemically grown monolayers of MoS<sub>2</sub> with a silver-bowtie nanoantenna array supporting narrow surface-lattice plasmonic resonances, a unique two-dimensional optical system has been achieved. The enhanced exciton–plasmon coupling enables profound changes in the emission and excitation processes leading to spectrally tunable, large photoluminescence enhancement as well as surface-enhanced Raman scattering at room temperature. Furthermore, due to the decreased damping of MoS<sub>2</sub> excitons interacting with the plasmonic resonances of the bowtie array at low temperatures stronger exciton–plasmon coupling is achieved resulting in a Fano line shape in the reflection spectrum. The Fano line shape, which is due to the interference between the pathways involving the excitation of the exciton and plasmon, can be tuned by altering the coupling strengths between the two systems via changing the design of the bowties lattice. The ability to manipulate the optical properties of two-dimensional systems with tunable plasmonic resonators offers a new platform for the design of novel optical devices with precisely tailored responses

    Electrical Tuning of Exciton–Plasmon Polariton Coupling in Monolayer MoS<sub>2</sub> Integrated with Plasmonic Nanoantenna Lattice

    No full text
    Active control of light-matter interactions in semiconductors is critical for realizing next generation optoelectronic devices with real-time control of the system’s optical properties and hence functionalities via external fields. The ability to dynamically manipulate optical interactions by applied fields in active materials coupled to cavities with fixed geometrical parameters opens up possibilities of controlling the lifetimes, oscillator strengths, effective mass, and relaxation properties of a coupled exciton–photon (or plasmon) system. Here, we demonstrate electrical control of exciton–plasmon coupling strengths between strong and weak coupling limits in a two-dimensional semiconductor integrated with plasmonic nanoresonators assembled in a field-effect transistor device by electrostatic doping. As a result, the energy-momentum dispersions of such an exciton–plasmon coupled system can be altered dynamically with applied electric field by modulating the excitonic properties of monolayer MoS<sub>2</sub> arising from many-body effects. In addition, evidence of enhanced coupling between charged excitons (trions) and plasmons was also observed upon increased carrier injection, which can be utilized for fabricating Fermionic polaritonic and magnetoplasmonic devices. The ability to dynamically control the optical properties of a coupled exciton–plasmonic system with electric fields demonstrates the versatility of the coupled system and offers a new platform for the design of optoelectronic devices with precisely tailored responses
    corecore