81 research outputs found

    Squalene Epoxidase Correlates E-Cadherin Expression and Overall Survival in Colorectal Cancer Patients: The Impact on Prognosis and Correlation to Clinicopathologic Features

    No full text
    Squalene epoxidase (SE), coded by SQLE, is an important rate-limiting enzyme in the cholesterol biosynthetic pathway. Recently, the aberrant expression of SQLE, which is responsible for epithelial to mesenchymal transition (EMT), has been reported in various types of cancer. This study was undertaken to clarify the clinicopathologic implications of SE in patients with stage I to IV colorectal cancer (CRC). We also analyzed the expression patterns of SE in association with E-cadherin in a series of CRCs. We detected the cytoplasmic expression of SE in 59.4% of carcinoma samples by immunohistochemistry (IHC). There was a significant correlation between a high level of SE expression and lymphovascular (LV) invasion (p < 0.001), tumor budding (p < 0.001), invasion depth (p = 0.002), regional lymph node metastasis (p < 0.001), and pathologic TNM stage (p < 0.001). SE is more abundantly expressed at the invasive front, and reversely correlated with E-cadherin expression. Patients with SE-positive CRC had shorter recurrence-free survival (RFS) and poor overall survival (OS) than those with SE-negative CRC in multivariate analysis (p < 0.001 and p < 0.001, respectively). These data suggest that SE can serve as a valuable biomarker for unfavorable prognosis, and as a possible therapeutic target in CRCs

    Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health

    No full text
    Marine algae are considered to be an abundant sources of bioactive compounds with cosmeceutical potential. Recently, a great deal of interest has focused on the health-promoting effects of marine bioactive compounds. Carbohydrates are the major and abundant constituent of marine algae and have been utilized in cosmetic formulations, as moisturizing and thickening agents for example. In addition, marine carbohydrates have been suggested as promising bioactive biomaterials for their various properties beneficial to skin, including antioxidant, anti-melanogenic and skin anti-aging properties. Therefore, marine algae carbohydrates have potential skin health benefits for value-added cosmeceutical applications. The present review focuses on the various biological capacities and potential skin health benefits of bioactive marine carbohydrates

    Different Levels of Skin Whitening Activity among 3,6-Anhydro-l-galactose, Agarooligosaccharides, and Neoagarooligosaccharides

    No full text
    3,6-Anhydro-l-galactose (AHG), a major monomeric constituent of red macroalgae (Rhodophyta), was recently reported to possess skin whitening activity. Moreover, AHG-containing oligosaccharides, such as agarooligosaccharides (AOSs) and neoagarooligosaccharides (NAOSs), have various physiological activities, including anti-inflammatory, antioxidant, and skin moisturizing effects. In this study, AHG and NAOSs were produced from agarose by enzymatic reactions catalyzed by an endo-type Ī²-agarase, an exo-type Ī²-agarase, and a neoagarobiose hydrolase. In a cell proliferation assay, AHG, AOSs, and NAOSs at 12.5, 25, and 50 Ī¼g/mL concentrations did not exhibit cytotoxicity toward murine B16 melanoma cells or human epidermal melanocytes. In an in vitro skin whitening activity assay of AHG, AOSs, and NAOSs at 50 Ī¼g/mL, AHG showed the highest skin whitening activity in both murine B16 melanoma cells and human epidermal melanocytes; this activity was mediated by the inhibition of melanogenesis. Neoagarotetraose and neoagarohexaose also exhibited in vitro skin whitening activity, whereas neoagarobiose and AOSs with degrees of polymerization of 3 (agarotriose), 5 (agaropentaose), and 7 (agaroheptaose) did not. Therefore, AHG is responsible for the skin whitening activity of agar-derived sugars, and the structural differences among the AHG-containing oligosaccharides may be responsible for their different skin whitening activities

    Enhanced Prediction and Determination of Hydrological Drought at Ungauged River Intake Stations under Changing Climate

    No full text
    Droughts, which are expected to worsen under global climate change, have major impacts on human life and the natural environment. In this study, an analysis system was established for predicting and determining hydrological drought conditions at ungauged water stations and in watersheds connected to municipal river water intake facilities. The aim was to help prevent drought damage or minimize its effects based on an immediate response to severe drought events. A system is presented for the selection of ungauged watersheds that take in river water, and three methodologies are proposed for identifying and forecasting hydrological drought conditions. Two South Korean pilot sites among the numerous ungauged water intake plants that lack local data collection facilities were selected as study areas. In addition, a roadmap for the establishment of standards for the determination of drought conditions in ungauged river basins was proposed. The methodologies introduced in this study assume nationwide expansion and construction. Their utilization can facilitate effective drought responses, based on drought forecasting and restricted water supply criteria for each phase of water intake, at local (and other) waterworks

    The Homeobox Gene Caudal Regulates Constitutive Local Expression of Antimicrobial Peptide Genes in Drosophila Epithelia

    Get PDF
    In Drosophila melanogaster, although the NF-ĪŗB transcription factors play a pivotal role in the inducible expression of innate immune genes, such as antimicrobial peptide genes, the exact regulatory mechanism of the tissue-specific constitutive expression of these genes in barrier epithelia is largely unknown. Here, we show that the Drosophila homeobox gene product Caudal functions as the innate immune transcription modulator that is responsible for the constitutive local expression of antimicrobial peptides cecropin and drosomycin in a tissue-specific manner. These results suggest that certain epithelial tissues have evolved a unique constitutive innate immune strategy by recruiting a developmental ā€œmaster controlā€ gene

    Production of Ethyl-agarobioside, a Novel Skin Moisturizer, by Mimicking the Alcoholysis from the Japanese Sake-Brewing Process

    No full text
    Agarobiose (AB; d-galactose-Ī²-1,4-AHG), produced by one-step acid hydrolysis of agarose of red seaweed, is considered a promising cosmetic ingredient due to its skin-moisturizing activity. In this study, the use of AB as a cosmetic ingredient was found to be hampered due to its instability at high temperature and alkaline pH. Therefore, to increase the chemical stability of AB, we devised a novel process to synthesize ethyl-agarobioside (ethyl-AB) from the acid-catalyzed alcoholysis of agarose. This process mimics the generation of ethyl Ī±-glucoside and glyceryl Ī±-glucoside by alcoholysis in the presence of ethanol and glycerol during the traditional Japanese sake-brewing process. Ethyl-AB also showed in vitro skin-moisturizing activity similar to that of AB, but showed higher thermal and pH stability than AB. This is the first report of ethyl-AB, a novel compound produced from red seaweed, as a functional cosmetic ingredient with high chemical stability
    • ā€¦
    corecore