7,717 research outputs found
Revealing the Exciton Fine Structure in PbSe Nanocrystal Quantum Dots
We measure the photoluminescence (PL) lifetime, , of excitons in
colloidal PbSe nanocrystals (NCs) at low temperatures to 270~mK and in high
magnetic fields to 15~T. For all NCs (1.3-2.3~nm radii), increases
sharply below 10~K but saturates by 500~mK. In contrast to the usual picture of
well-separated ``bright" and ``dark" exciton states (found, e.g., in CdSe NCs),
these dynamics fit remarkably well to a system having two exciton states with
comparable - but small - oscillator strengths that are separated by only
300-900 eV. Importantly, magnetic fields reduce below 10~K,
consistent with field-induced mixing between the two states. Magnetic circular
dichroism studies reveal exciton g-factors from 2-5, and magneto-PL shows
10\% circularly polarized emission.Comment: To appear in Physical Review Letter
A New Era in High-energy Physics
In TeV-scale gravity, scattering of particles with center-of-mass energy of
the order of a few TeV can lead to the creation of nonperturbative, extended,
higher-dimensional gravitational objects: Branes. Neutral or charged, spinning
or spinless, Einsteinian or supersymmetric, low-energy branes could
dramatically change our picture of high-energy physics. Will we create branes
in future particle colliders, observe them from ultra high energy cosmic rays,
and discover them to be dark matter?Comment: 8 pages, 2 figures. Essay submitted on Mar 26, 2002 to the Gravity
Research Foundation. Awarded the third prize in the 2002 GRF competitio
Probing the nucleon structure with CLAS
An overview of recent results with CLAS is presented with emphasis on nucleon
resonance studies, nucleon spin structure, and generalized parton
distributions.Comment: Plenary talk presented at NSTAR 2007, Bonn, German
Generation of Three-Qubit Entangled W-State by Nonlinear Optical State Truncation
We propose an alternative scheme to generate W state via optical state
truncation using quantum scissors. In particular, these states may be generated
through three-mode optical state truncation in a Kerr nonlinear coupler. The
more general three-qubit state may be also produced if the system is driven by
external classical fields.Comment: 7 pages, 2 figur
Electroexcitation of the P33(1232), P11(1440), D13(1520), S11(1535) at Q^2=0.4 and 0.65(GeV/c)^2
Using two approaches: dispersion relations and isobar model, we have analyzed
recent high precision CLAS data on cross sections of \pi^0, \pi^+, and \eta
electroproduction on protons, and the longitudinally polarized electron beam
asymmetry for p(\vec{e},e'p)\pi^0 and p(\vec{e},e'n)\pi^+. The contributions of
the resonances P33(1232), P11(1440), D13(1520), S11(1535) to \pi
electroproduction and S11(1535) to \eta electroproduction are found. The
results obtained in the two approaches are in good agreement with each other.
There is also good agreement between amplitudes of the \gamma^* N \to S11(1535)
transition found in \pi and \eta electroproduction. For the first time accurate
results are obtained for the longitudinal amplitudes of the P11(1440),
D13(1520) and S11(1535) electroexcitation on protons.Comment: 9 pages, 9 figure
Upper critical field divergence induced by mesoscopic phase separation in the organic superconductor (TMTSF)2ReO4
Due to the competition of two anion orders, (TMTSF)2ReO4, presents a phase
coexistence between semiconducting and metallic (superconducting) regions
(filaments or droplets) in a wide range of pressure. In this regime, the
superconducting upper critical field for H parallel to both c* and b' axes
present a linear part at low fields followed by a divergence above a cross-over
field. This cross-over corresponds to the 3D-2D decoupling transition expected
in filamentary or granular superconductors. The sharpness of the transition
also demonstrates that all filaments are of similar sizes and self organize in
a very ordered way. The distance between the filaments and their cross-section
are estimated.Comment: 4 pages, 4 figure
An Improved Effective Cost Review Process for Value Engineering
Second-look value engineering (VE) is an approach that aims to lower the costs of products for which target costs are not being met during the production stage. Participants in second-look VE typically come up with a variety of ideas for cost cutting, but the outcomes often depend on their levels of experience, and not many good alternatives are available during the production stage. Nonetheless, good ideas have been consistently generated by VE experts. This paper investigates past second-look VE cases and the thinking processes of VE experts and proposes a cost review process as a systematic means of investigating cost-cutting ideas. This cost review process includes the use of an idea checklist and a specification review process. In addition to presenting the process, this paper reports on its feasibility, based on its introduction into a VE training course as part of a pilot study. The results indicate that the cost review process is effective in generating ideas for later analysis
Production and optical properties of liquid scintillator for the JSNS experiment
The JSNS (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron
Source) experiment will search for neutrino oscillations over a 24 m short
baseline at J-PARC. The JSNS inner detector will be filled with 17 tons
of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of
unloaded LS in the intermediate -catcher and outer veto volumes.
JSNS has chosen Linear Alkyl Benzene (LAB) as an organic solvent because
of its chemical properties. The unloaded LS was produced at a refurbished
facility, originally used for scintillator production by the RENO experiment.
JSNS plans to use ISO tanks for the storage and transportation of the LS.
In this paper, we describe the LS production, and present measurements of its
optical properties and long term stability. Our measurements show that storing
the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures
Hopping Conductivity of a Nearly-1d Fractal: a Model for Conducting Polymers
We suggest treating a conducting network of oriented polymer chains as an
anisotropic fractal whose dimensionality D=1+\epsilon is close to one.
Percolation on such a fractal is studied within the real space renormalization
group of Migdal and Kadanoff. We find that the threshold value and all the
critical exponents are strongly nonanalytic functions of \epsilon as \epsilon
tends to zero, e.g., the critical exponent of conductivity is \epsilon^{-2}\exp
(-1-1/\epsilon). The distribution function for conductivity of finite samples
at the percolation threshold is established. It is shown that the central body
of the distribution is given by a universal scaling function and only the
low-conductivity tail of distribution remains -dependent. Variable
range hopping conductivity in the polymer network is studied: both DC
conductivity and AC conductivity in the multiple hopping regime are found to
obey a quasi-1d Mott law. The present results are consistent with electrical
properties of poorly conducting polymers.Comment: 27 pages, RevTeX, epsf, 5 .eps figures, to be published in Phys. Rev.
Inhomogeneous superconductivity in organic conductors: role of disorder and magnetic field
Several experimental studies have shown the presence of spatially
inhomogeneous phase coexistence of superconducting and non superconducting
domains in low dimensional organic superconductors. The superconducting
properties of these systems are found to be strongly dependent on the amount of
disorder introduced in the sample regardless of its origin. The suppression of
the superconducting transition temperature shows clear discrepancy with
the result expected from the Abrikosov-Gor'kov law giving the behavior of
with impurities. Based on the time dependent Ginzburg-Landau theory, we derive
a model to account for the striking feature of in organic superconductors
for different types of disorder by considering the segregated texture of the
system. We show that the calculated quantitatively agrees with
experiments. We also focus on the role of superconducting fluctuations on the
upper critical fields of layered superconductors showing slab
structure where superconducting domains are sandwiched by non-superconducting
regions. We found that may be strongly enhanced by such fluctuations.Comment: to appear in Journal of Physics: Condensed Matte
- …