94 research outputs found

    Advances in Neural Stem Cell Therapy for Spinal Cord Injury: Safety, Efficacy, and Future Perspectives

    Get PDF
    Spinal cord injury (SCI) is a devastating central nervous system injury that leads to severe disabilities in motor and sensory functions, causing significant deterioration in patients’ quality of life. Owing to the complexity of SCI pathophysiology, there has been no effective treatment for reversing neural tissue damage and recovering neurological functions. Several novel therapies targeting different stages of pathophysiological mechanisms of SCI have been developed. Among these, treatments using stem cells have great potential for the regeneration of damaged neural tissues. In this review, we have summarized recent preclinical and clinical studies focusing on neural stem cells (NSCs). NSCs are multipotent cells with specific differentiation capabilities for neural lineage. Several preclinical studies have demonstrated the regenerative effects of transplanted NSCs in SCI animal models through both paracrine effects and direct neuronal differentiation, restoring synaptic connectivity and neural networks. Based on the positive results of several preclinical studies, phase I and II clinical trials using NSCs have been performed. Despite several hurdles and issues that need to be addressed in the clinical use of NSCs in patients with SCI, gradual progress in the technical development and therapeutic efficacy of NSCs treatments has enhanced the prospects for cell-based treatments in SCI

    Current advances in combining stem cell and gene therapy for neurodegenerative diseases

    Get PDF
    Neuronal death is the common final pathologic pathway of various neurodegenerative diseases (NDs). Although central nervous system has little regenerative potential, it is expected that damaged neural tissue can be recovered by exogenous supplementation of stem cells; however, stem cell therapy cannot modulate specific causes of NDs, such as accumulation of extracellular amyloid peptides in Alzheimer’s disease. In contrast, gene therapy can deliver therapeutic genes to specific ND targets. Therefore, combining stem cell and gene therapy would have dual treatment mechanisms (regenerating damaged neural tissue and modifying specific causes of NDs) and lead to better clinical outcomes. In this review, we discuss various therapeutic genes that can be used to develop stem cell gene therapy for various NDs and the techniques for how therapeutic genes can be integrated into stem cells

    Patient-Specific Orthotopic Glioblastoma Xenograft Models Recapitulate the Histopathology and Biology of Human Glioblastomas In Situ

    Get PDF
    SummaryFrequent discrepancies between preclinical and clinical results of anticancer agents demand a reliable translational platform that can precisely recapitulate the biology of human cancers. Another critical unmet need is the ability to predict therapeutic responses for individual patients. Toward this goal, we have established a library of orthotopic glioblastoma (GBM) xenograft models using surgical samples of GBM patients. These patient-specific GBM xenograft tumors recapitulate histopathological properties and maintain genomic characteristics of parental GBMs in situ. Furthermore, in vivo irradiation, chemotherapy, and targeted therapy of these xenograft tumors mimic the treatment response of parental GBMs. We also found that establishment of orthotopic xenograft models portends poor prognosis of GBM patients and identified the gene signatures and pathways signatures associated with the clinical aggressiveness of GBMs. Together, the patient-specific orthotopic GBM xenograft library represent the preclinically and clinically valuable “patient tumor’s phenocopy” that represents molecular and functional heterogeneity of GBMs

    Trans-Differentiation of Neural Stem Cells: A Therapeutic Mechanism Against the Radiation Induced Brain Damage

    Get PDF
    Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs) would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases

    Ectopic over-expression of tristetraprolin in human cancer cells promotes biogenesis of let-7 by down-regulation of Lin28

    Get PDF
    Tristetraprolin (TTP) is a AU-rich element (ARE) binding protein and exhibits suppressive effects on cell growth through down-regulation of ARE-containing oncogenes. The let-7 microRNA has emerged as a significant factor in tumor suppression. Both TTP and let-7 are often repressed in human cancers, thereby promoting oncogenesis by derepressing their target genes. In this work, an unexpected link between TTP and let-7 has been found in human cancer cells. TTP promotes an increase in expression of mature let-7, which leads to the inhibition of let-7 target gene CDC34 expression and suppresses cell growth. This event is associated with TTP-mediated inhibition of Lin28, which has emerged as a negative modulator of let-7. Lin28 mRNA contains ARE within its 3′-UTR and TTP enhances the decay of Lin28 mRNA through binding to its 3′-UTR. This suggests that the TTP-mediated down-regulation of Lin28 plays a key role in let-7 miRNA biogenesis in cancer cells

    Tumor Progression Locus 2 (Tpl2) Kinase as a Novel Therapeutic Target for Cancer: Double-Sided Effects of Tpl2 on Cancer

    No full text
    Tumor progression locus 2 (Tpl2) is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed

    Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling

    No full text
    Glioblastoma multiforme (GBM) is the most common human primary brain malignancy and has a dismal prognosis. Aggressive treatments using maximal surgical resection, radiotherapy, and temozolomide result in median survival of only 14.6 months in patients with GBM. Numerous clinical approaches using small molecule inhibitors have shown disappointing results because of the genetic heterogeneity of GBM. The epithelial to mesenchymal transition (EMT) is a crucial biological process occurring in the early development stages of many species. However, cancer cells often obtain the ability to invade and metastasize through the EMT, which triggers the scattering of cells. The hepatocyte growth factor (HGF)/MET signaling pathway is indicative of the EMT during both embryogenesis and the invasive growth of tumors, because HGF potently induces mesenchymal transition in epithelial-driven cells. Activation of MET signaling or co-overexpression of HGF and MET frequently represents aggressive growth and poor prognosis of various cancers, including GBM. Thus, efforts to treat cancers by inhibiting MET signaling using neutralizing antibodies or small molecule inhibitors have progressed during the last decade. In this review, we discuss HGF/MET signaling in the development of diseases, including cancers, as well as updates on MET inhibition therapy.Y

    Reduced immunoreactivities of a vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptor (VPAC1 receptor) in the cerebral cortex, hippocampal region, and amygdala of aged rats

    No full text
    In this study, we examined expressional changes of VPAC1 receptor in aged rat brains using an immunohistochemical approach and found that its immunoreactivities are significantly reduced in the cerebral cortex, hippocampal region, and amygdala of aged rats. These results suggest that this reduction could underlie aging-associated memory/learning deficits and several other age-induced functional changes in these areas. However, the functional consequences of these down-regulations require further elucidation

    Immunohistochemical study on the distribution of phosphorylated extracellular signal-regulated kinase (ERK) in the central nervous system of SOD1G93A transgenic mice

    No full text
    In the present study, we performed immunohistochemical studies to investigate the changes of phosphorylated extracellular signal-regulated kinases (pERK) in the central nervous system of SOD1(G93A) transgenic mice. In symptomatic transgenic mice, pERK-immunoreactive astrocytes were detected in the spinal cord, brainstem, central gray and cerebellar nuclei. In contrast to symptomatic mice, no pERK-immunoreactive astrocytes were observed in any brain region of wtSOD1 and presymptomatic mice, and the number and intensity of stained neurons were not different at the age of 8 weeks and 13 weeks. Interestingly, region-specific alterations in pERK immunoreactivity were observed in the hippocampal region and cerebellum. These results provide the first evidence that pERK-immunoreactive astrocytes were found in the CNS of SOD1(G93A) transgenic mice after clinical symptoms, showing a possible consequence of the pathological process of ALS. This study has also demonstrated that pERK increases in the hippocampus and cerebellum, suggesting a role of pERK in an abnormality of cognitive and/or motor function in ALS, respectively. However, the mechanisms underlying the increased immunoreactivity for pERK and the functional implications require elucidation
    corecore