13 research outputs found

    Conformational heterogeneity of molecules physisorbed on a gold surface at room temperature

    Get PDF
    A quantitative single-molecule tip-enhanced Raman spectroscopy (TERS) study at room temperature remained a challenge due to the rapid structural dynamics of molecules exposed to air. Here, we demonstrate the hyperspectral TERS imaging of single or a few brilliant cresyl blue (BCB) molecules at room temperature, along with quantitative spectral analyses. Robust chemical imaging is enabled by the freeze-frame approach using a thin Al2O3 capping layer, which suppresses spectral diffusions and inhibits chemical reactions and contamination in air. For the molecules resolved spatially in the TERS image, a clear Raman peak variation up to 7.5 cm(-1) is observed, which cannot be found in molecular ensembles. From density functional theory-based quantitative analyses of the varied TERS peaks, we reveal the conformational heterogeneity at the single-molecule level. This work provides a facile way to investigate the single-molecule properties in interacting media, expanding the scope of single-molecule vibrational spectroscopy studies. Tip-enhanced vibrational spectroscopy at room temperature is complicated by molecular conformational dynamics, photobleaching, contaminations, and chemical reactions in air. This study demonstrates that a sub-nm protective layer of Al2O3 provides robust conditions for probing single-molecule conformations

    Spatio-Temporal Variability of the Habitat Suitability Index for Chub Mackerel (Scomber Japonicus) in the East/Japan Sea and the South Sea of South Korea

    No full text
    The climate-induced decrease in fish catches in South Korea has been a big concern over the last decades. The increase in sea surface temperature (SST) due to climate change has led to not only a decline in fishery landings but also a shift in the fishing grounds of several fish species. The habitat suitability index (HSI), a reliable indicator of the capacity of a habitant to support selected species, has been widely used to detect and forecast fishing ground formation. In this study, the catch data of the chub mackerel and satellite-derived environmental factors were used to calculate the HSI for the chub mackerel in the South Sea, South Korea. More than 80% of the total catch was found in areas with an SST of 14.72–25.72 °C, chlorophyll-a of 0.30–0.92 mg m−3, and primary production of 523.7–806.46 mg C m−2 d−1. Based on these results, the estimated climatological monthly HSI from 2002 to 2016 clearly showed that the wintering ground of the chub mackerel generally formed in the South Sea of South Korea, coinciding with the catch distribution during the same period. This outcome implies that our estimated HSI can yield a reliable prediction of the fishing ground for the chub mackerel in the East/Japan Sea and South Sea of South Korea

    Annual New Production of Phytoplankton Estimated from MODIS-Derived Nitrate Concentration in the East/Japan Sea

    No full text
    Our main objective in this study was to determine the inter-annual variation of the annual new production in the East/Japan Sea (EJS), which was estimated from MODIS-aqua satellite-derived sea surface nitrate (SSN). The new production was extracted from northern (>40° N) and southern (>40° N) part of EJS based on Sub Polar Front (SPF). Based on the SSN concentrations derived from satellite data, we found that the annual new production (Mean ± S.D = 85.6 ± 10.1 g C m−2 year−1) in the northern part of the EJS was significantly higher (t-test, p < 0.01) than that of the southern part of the EJS (Mean ± S.D = 65.6 ± 3.9 g C m−2 year−1). Given the relationships between the new productions and sea surface temperature (SST) in this study, the new production could be more susceptible in the northern part than the southern part of the EJS under consistent SST warming. Since the new production estimated in this study is only based on the nitrate inputs into the euphotic depths during the winter, new productions from additional nitrate sources (e.g., the nitrate upward flux through the MLD and atmospheric deposition) should be considered for estimating the annual new production

    Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials

    No full text
    Abstract Tip-enhanced nano-spectroscopy and -imaging have significantly advanced our understanding of low-dimensional quantum materials and their interactions with light, providing a rich insight into the underlying physics at their natural length scale. Recently, various functionalities of the plasmonic tip expand the capabilities of the nanoscopy, enabling dynamic manipulation of light-matter interactions at the nanoscale. In this review, we focus on a new paradigm of the nanoscopy, shifting from the conventional role of imaging and spectroscopy to the dynamical control approach of the tip-induced light-matter interactions. We present three different approaches of tip-induced control of light-matter interactions, such as cavity-gap control, pressure control, and near-field polarization control. Specifically, we discuss the nanoscale modifications of radiative emissions for various emitters from weak to strong coupling regime, achieved by the precise engineering of the cavity-gap. Furthermore, we introduce recent works on light-matter interactions controlled by tip-pressure and near-field polarization, especially tunability of the bandgap, crystal structure, photoluminescence quantum yield, exciton density, and energy transfer in a wide range of quantum materials. We envision that this comprehensive review not only contributes to a deeper understanding of the physics of nanoscale light-matter interactions but also offers a valuable resource to nanophotonics, plasmonics, and materials science for future technological advancements

    Long-Term Pattern of Primary Productivity in the East/Japan Sea Based on Ocean Color Data Derived from MODIS-Aqua

    No full text
    The East/Japan Sea (hereafter, the East Sea) is highly dynamic in its physical phenomena and biological characteristics, but it has changed substantially over the last several decades. In this study, a recent decadal trend of primary productivity in the East Sea was analyzed based on Moderate-Resolution Imaging Spectroradiometer (MODIS)-derived monthly values to detect any long-term change. The daily primary productivities averaged using monthly values from 2003 to 2012 were 719.7 mg·C·m−2·d−1 (S.D. ± 197.5 mg·C·m−2·d−1, n = 120) and 632.3 mg·C·m−2·d−1 (S.D. ± 235.1 mg·C·m−2·d−1, n = 120) for the southern and northern regions of the East Sea, respectively. Based on the daily productivities, the average annual primary production in the East Sea was 246.8 g·C·m−2·y−1, which was substantially higher than that previously reported in deep oceans. However, a decreasing trend (13% per 10 years) in the annual primary production was observed in the East Sea within the study period from 2003 to 2012. The shallower mixed layers caused by increased temperature could be a potential cause for the decline in annual production. However, this decline could also be part of an oscillation pattern that is strongly governed by the Pacific Decadal Oscillation (PDO). A better understanding of primary productivity patterns and their subsequent effects on the marine ecosystem is required for further interdisciplinary studies in the East Sea

    Probing single-molecule conformational heterogeneity at room temperature via hyperspectral tip-enhanced Raman imaging

    Get PDF
    Cryogenic tip-enhanced Raman spectroscopy (TERS) studies have revealed single-molecule dynamics; however, understanding the nature of single molecules in ambient conditions has remained challenging. Here, we demonstrate the hyperspectral TERS imaging of single brilliant cresyl blue (BCB) molecules, along with quantitative spectral analyses, revealing their conformational heterogeneity in ambient conditions. Robust single-molecule imaging is enabled by encapsulating the molecules with a thin Al2_{2}O3_{3} film, which suppresses spectral diffusions and inhibits chemical reactions and contaminations in air. For the single molecules resolved spatially in the TERS image, a clear Raman peak variation up to ~7.5 cm−1^{-1} is observed, which cannot be found in molecular ensembles. From density functional theory-based quantitative analyses of the varied TERS peaks of single molecules, we reveal the single-molecule conformational heterogeneity at room temperature. This work provides a facile way to investigate the single-molecule properties in interacting media, expanding the scope of single-molecule vibrational spectroscopy studies.Comment: 23 pages, 5 figure

    The Contribution of Small Phytoplankton Communities to the Total Dissolved Inorganic Nitrogen Assimilation Rates in the East/Japan Sea: An Experimental Evaluation

    No full text
    As a part of Korean-Russian joint expeditions in the East/Japan Sea during 2012 and 2015, a set of total and small (<2 μm) phytoplankton NO3− and NH4+ uptake rate estimations were carried out. The study aimed to assess the spatio-temporal variations in dissolved inorganic nitrogen (DIN) assimilation by the total and small phytoplankton. The results show that the total NO3− uptake rates during 2012 varied between 0.001 and 0.150 μmol NL−1h−1 (mean ± SD = 0.034 ± 0.033) and that the total NH4+ uptake rates ranged between 0.002 and 0.707 μmol NL−1h−1 (mean ± SD = 0.200 ± 0.158). The total uptake rates during 2015 were ranged from 0.003 to 0.530 (mean ± S.D. = 0.117 ± 0.120 μmol NL−1h−1) for NO3− and from 0.008 to 1.17 (mean ± S.D. = 0.199 ± 0.266 NL−1h−1) for NH4+. The small phytoplankton NO3− and NH4+ uptake rates during 2015 ranged between 0.001 and 0.164 (mean ± S.D. = 0.033 ± 0.036) μmol NL−1h−1 and 0.010–0.304 (mean ± S.D. = 0.101 ± 0.073) μmol NL−1h−1, respectively. Small phytoplankton’s contribution to the total depth-integrated NO3− and NH4+ uptake rates ranged from 10.24 to 59.36% and from 30.21 to 68.55%, respectively. The significant negative relationship observed between the depth-integrated total NO3− and NH4+ uptake rates and small phytoplankton contributions indicates a possible decline in the DIN assimilation rates under small phytoplankton dominance. The results from the present study highlight the possibility of a reduction in the total DIN assimilation process in the East/Japan Sea when small phytoplankton dominate under strong thermal stratification due to sea surface warming. The present study’s findings agree with the model projections, which suggested a decline in primary production in the global warming scenario

    Seasonal Compositions of Size-Fractionated Surface Phytoplankton Communities in the Yellow Sea

    No full text
    Little information on the phytoplankton community in the Yellow Sea (YS)—especially size-fractionated phytoplankton—is currently available, in comparison to the various physicochemical studies in the literature. Using high-performance liquid chromatography (HPLC), size-fractionated phytoplankton communities were seasonally investigated in the YS in 2019. In the study period, diatoms (55.0 ± 10.2%) and cryptophytes (16.9 ± 9.3%) were the dominant groups. Due to the recent alteration in inorganic nutrient conditions reported in the YS, the contribution of diatoms was lower than in previous studies. The large-sized phytoplankton group (>20 ”m) was dominated mostly by diatoms (89.0 ± 10.6%), while the small-sized phytoplankton group (<20 ”m) was also dominated by diatoms (41.9 ± 9.1%), followed by cryptophytes (19.2 ± 9.8%). The contributions of small-sized diatoms (<20 ”m) have been overlooked in the past, as they are difficult to detect, but this study confirms significant amounts of small-sized diatoms, accounting for 62.3% of the total diatoms in the YS. This study provides an important background for assessing the seasonal variations in different-sized diatom groups in the YS. Further detailed studies on their potential ecological roles should be conducted, in order to better understand marine ecosystems under future warming scenarios

    All-optical control of high-purity trions in nanoscale waveguide

    No full text
    © 2023 Springer Nature Limited. The generation of high-purity localized trions, dynamic exciton-trion interconversion, and their spatial modulation in two-dimensional (2D) semiconductors are building blocks for the realization of trion-based optoelectronic devices. Here, we present a method for the all-optical control of the exciton-to-trion conversion process and its spatial distributions in a MoS2 monolayer. We induce a nanoscale strain gradient in a 2D crystal transferred on a lateral metal-insulator-metal (MIM) waveguide and exploit propagating surface plasmon polaritons (SPPs) to localize hot electrons. These significantly increase the electrons and efficiently funnel excitons in the lateral MIM waveguide, facilitating complete exciton-to-trion conversion even at ambient conditions. Additionally, we modulate the SPP mode using adaptive wavefront shaping, enabling all-optical control of the exciton-to-trion conversion rate and trion distribution in a reversible manner. Our work provides a platform for harnessing excitonic quasiparticles efficiently in the form of trions at ambient conditions, enabling high-efficiency photoconversion. © 2023. The Author(s).11Nsciescopu
    corecore