968 research outputs found

    Entanglement of distant optomechanical systems

    Get PDF
    We theoretically investigate the possibility to generate non-classical states of optical and mechanical modes of optical cavities, distant from each other. A setup comprised of two identical cavities, each with one fixed and one movable mirror and coupled by an optical fiber, is studied in detail. We show that with such a setup there is potential to generate entanglement between the distant cavities, involving both optical and mechanical modes. The scheme is robust with respect to dissipation, and nonlocal correlations are found to exist in the steady state at finite temperatures.Comment: 12 pages (published with minor modifications

    Theory of Thermoelectric Power in High-Tc Superconductors

    Full text link
    We present a microscopic theory for the thermoelectric power (TEP) in high-Tc cuprates. Based on the general expression for the TEP, we perform the calculation of the TEP for a square lattice Hubbard model including all the vertex corrections necessary to satisfy the conservation laws. In the present study, characteristic anomalous temperature and doping dependences of the TEP in high-Tc cuprates, which have been a long-standing problem of high-Tc cuprates, are well reproduced for both hole- and electron-doped systems, except for the heavily under-doped case. According to the present analysis, the strong momentum and energy dependences of the self-energy due to the strong antiferromagnetic fluctuations play an essential role in reproducing experimental anomalies of the TEP.Comment: 5 pages, 8 figures, to appear in J. Phys. Soc. Jpn. 70 (2001) No.10. Figure 2 has been revise

    Giant lasing effect in magnetic nanoconductors

    Full text link
    We propose a new principle for a compact solid-state laser in the 1-100 THz regime. This is a frequency range where attempts to fabricate small size lasers up till now have met severe technical problems. The proposed laser is based on a new mechanism for creating spin-flip processes in ferromagnetic conductors. The mechanism is due to the interaction of light with conduction electrons; the interaction strength, being proportional to the large exchange energy, exceeds the Zeeman interaction by orders of magnitude. On the basis of this interaction, a giant lasing effect is predicted in a system where a population inversion has been created by tunneling injection of spin-polarized electrons from one ferromagnetic conductor to another -- the magnetization of the two ferromagnets having different orientations. Using experimental data for ferromagnetic manganese perovskites with nearly 100% spin polarization we show the laser frequency to be in the range 1-100 THz. The optical gain is estimated to be of order 10^7 cm^{-1}, which exceeds the gain of conventional semiconductor lasers by 3 or 4 orders of magnitude. A relevant experimental study is proposed and discussed.Comment: 4 pages, 3 figure

    Interplay between Coulomb Blockade and Resonant Tunneling studied by the Keldysh Green's Function Method

    Full text link
    A theory of tunneling through a quantum dot is presented which enables us to study combined effects of Coulomb blockade and discrete energy spectrum of the dot. The expression of tunneling current is derived from the Keldysh Green's function method, and is shown to automatically satisfy the conservation at DC current of both junctions.Comment: 4 pages, 3 figures(mail if you need), use revtex.sty, error corrected, changed titl

    The Effects of Resonant Tunneling on Magnetoresistance through a Q uantum Dot

    Full text link
    The effect of resonant tunneling on magnetoresistance (MR) is studied theoretically in a double junction system. We have found that the ratio of the MR of the resonant peak current is reduced more than that of the single junction, whereas that of the valley current is enhanced depending on the change of the discrete energy-level under the change of magnetic field. We also found that the peak current-valley current (PV) ratio decreases when the junction conductance increases.Comment: 11 pages, 3 figures(mail if you need), use revtex.st

    Diffusion Thermopower at Even Denominator Fractions

    Get PDF
    We compute the electron diffusion thermopower at compressible Quantum Hall states corresponding to even denominator fractions in the framework of the composite fermion approach. It is shown that the deviation from the linear low temperature behavior of the termopower is dominated by the logarithmic temperature corrections to the conductivity and not to the thermoelectric coefficient, although such terms are present in both quantities. The enhanced magnitude of this effect compared to the zero field case may allow its observation with the existing experimental techniques.Comment: Latex, 12 pages, Nordita repor

    Influence of Long-Range Coulomb Interactions on the Metal-Insulator Transition in One-Dimensional Strongly Correlated Electron Systems

    Full text link
    The influence of long-range Coulomb interactions on the properties of one-dimensional (1D) strongly correlated electron systems in vicinity of the metal-insulator phase transition is considered. It is shown that unscreened repulsive Coulomb forces lead to the formation of a 1D Wigner crystal in the metallic phase and to the transformation of the square-root singularity of the compressibility (characterizing the commensurate-incommensurate transition) to a logarithmic singularity. The properties of the insulating (Mott) phase depend on the character of the short-wavelength screening of the Coulomb forces. For a sufficiently short screening length the characteristics of the charge excitations in the insulating phase are totally determined by the Coulomb interaction and these quasipartic les can be described as quasiclassical Coulomb solitons.Comment: 14 pages, LaTeX, G{\"o}teborg preprint APR 94-3

    Coherent and sequential photoassisted tunneling through a semiconductor double barrier structure

    Full text link
    We have studied the problem of coherent and sequential tunneling through a double barrier structure, assisted by light considered to be present All over the structure, i,e emitter, well and collector as in the experimental evidence. By means of a canonical transformation and in the framework of the time dependent perturbation theory, we have calculated the transmission coefficient and the electronic resonant current. Our calculations have been compared with experimental results turning out to be in good agreement. Also the effect on the coherent tunneling of a magnetic field parallel to the current in the presence of light, has been considered.Comment: Revtex3.0, 8figures uuencoded compressed tar-fil

    Calculation of Optical Conductivity, Resistivity and Thermopower of Filled Skutterudite CeRu4_4Sb12_{12} based on a Realistic Tight-binding Model with Strong Correlation

    Get PDF
    The filled-skutterudite compound CeRu4_4Sb12_{12} shows a pseudo-gap structure in the optical conductivity spectra similar to the Kondo insulators, but metallic behavior below 80 K. The resistivity shows a large peak at 80 K, and the Seebeck coefficient is positive and also shows a large peak at nearly the same temperature. In order to explain all these features, a simplified tight-binding model, which captures the essential features of the band calculation, is proposed. Using this model and introducing the correlation effect within the framework of the dynamical mean field approximation and the iterative perturbation theory, the temperature dependences of the optical conductivity, resistivity and the Seebeck coefficient are calculated, which can explain the experiments.Comment: 4 pages, 6 figure
    corecore