1,320 research outputs found

    High-temperature excess current and quantum suppression of electronic backscattering in a 1-D system

    Full text link
    We consider the electronic current through a one-dimensional conductor in the ballistic transport regime and show that the quantum oscillations of a weakly pinned single scattering target results in a temperature- and bias-voltage independent excess current at large bias voltages. This is a genuine effect on transport that derives from an exponential reduction of electronic backscattering in the elastic channel due to quantum delocalization of the scatterer and from suppression of low-energy electron backscattering in the inelastic channels caused by the Pauli exclusion principle. We show that both the mass of the target and the frequency of its quantum vibrations can be measured by studying the differential conductance and the excess current. We apply our analysis to the particular case of a weakly pinned C60 molecule encapsulated by a single-wall carbon nanotube and find that the discussed phenomena are experimentally observable.Comment: 4 pages, 4 figure

    Analytical expressions for the charge-charge local-field factor and the exchange-correlation kernel of a two-dimensional electron gas

    Full text link
    We present an analytical expression for the static many-body local field factor G+(q)G_{+}(q) of a homogeneous two-dimensional electron gas, which reproduces Diffusion Monte Carlo data and embodies the exact asymptotic behaviors at both small and large wave number qq. This allows us to also provide a closed-form expression for the exchange and correlation kernel Kxc(r)K_{xc}(r), which represents a key input for density functional studies of inhomogeneous systems.Comment: 5 pages, 3 figure

    Magnetopolaronic effects in electron transport through a single-level vibrating quantum dot

    Get PDF
    Magneto-polaronic effects are considered in electron transport through a single-level vibrating quantum dot subjected to a transverse (to the current flow) magnetic field. It is shown that the effects are most pronounced in the regime of sequential electron tunneling, where a polaronic blockade of the current at low temperatures and an anomalous temperature dependence of the magnetoconductance are predicted. In contrast, for resonant tunneling of polarons the peak conductance is not affected by the magnetic field.Comment: 7 pages, 2 figure

    The Influence of Electro-Mechanical Effects on Resonant Electron Tunneling Through Small Carbon Nano-Peapods

    Full text link
    The influence of a fullerene molecule trapped inside a single-wall carbon nanotube on resonant electron transport at low temperatures and strong polaronic coupling is theoretically discussed. Strong peak to peak fluctuations and anomalous temperature behavior of conductance amplitudes are predicted and investigated. The influence of the chiral properties of carbon nanotubes on transport is also studied.Comment: 17 pages, 3 figures. Replaced with published version. Important changes. Open access: http://stacks.iop.org/1367-2630/10/04304

    Giant lasing effect in magnetic nanoconductors

    Full text link
    We propose a new principle for a compact solid-state laser in the 1-100 THz regime. This is a frequency range where attempts to fabricate small size lasers up till now have met severe technical problems. The proposed laser is based on a new mechanism for creating spin-flip processes in ferromagnetic conductors. The mechanism is due to the interaction of light with conduction electrons; the interaction strength, being proportional to the large exchange energy, exceeds the Zeeman interaction by orders of magnitude. On the basis of this interaction, a giant lasing effect is predicted in a system where a population inversion has been created by tunneling injection of spin-polarized electrons from one ferromagnetic conductor to another -- the magnetization of the two ferromagnets having different orientations. Using experimental data for ferromagnetic manganese perovskites with nearly 100% spin polarization we show the laser frequency to be in the range 1-100 THz. The optical gain is estimated to be of order 10^7 cm^{-1}, which exceeds the gain of conventional semiconductor lasers by 3 or 4 orders of magnitude. A relevant experimental study is proposed and discussed.Comment: 4 pages, 3 figure

    Theory of Thermoelectric Power in High-Tc Superconductors

    Full text link
    We present a microscopic theory for the thermoelectric power (TEP) in high-Tc cuprates. Based on the general expression for the TEP, we perform the calculation of the TEP for a square lattice Hubbard model including all the vertex corrections necessary to satisfy the conservation laws. In the present study, characteristic anomalous temperature and doping dependences of the TEP in high-Tc cuprates, which have been a long-standing problem of high-Tc cuprates, are well reproduced for both hole- and electron-doped systems, except for the heavily under-doped case. According to the present analysis, the strong momentum and energy dependences of the self-energy due to the strong antiferromagnetic fluctuations play an essential role in reproducing experimental anomalies of the TEP.Comment: 5 pages, 8 figures, to appear in J. Phys. Soc. Jpn. 70 (2001) No.10. Figure 2 has been revise

    Influence of Long-Range Coulomb Interactions on the Metal-Insulator Transition in One-Dimensional Strongly Correlated Electron Systems

    Full text link
    The influence of long-range Coulomb interactions on the properties of one-dimensional (1D) strongly correlated electron systems in vicinity of the metal-insulator phase transition is considered. It is shown that unscreened repulsive Coulomb forces lead to the formation of a 1D Wigner crystal in the metallic phase and to the transformation of the square-root singularity of the compressibility (characterizing the commensurate-incommensurate transition) to a logarithmic singularity. The properties of the insulating (Mott) phase depend on the character of the short-wavelength screening of the Coulomb forces. For a sufficiently short screening length the characteristics of the charge excitations in the insulating phase are totally determined by the Coulomb interaction and these quasipartic les can be described as quasiclassical Coulomb solitons.Comment: 14 pages, LaTeX, G{\"o}teborg preprint APR 94-3

    Systematic trends in beta-delayed particle emitting nuclei: The case of beta-p-alpha emission from 21Mg

    Get PDF
    We have observed beta+-delayed alpha and p-alpha emission from the proton-rich nucleus 21Mg produced at the ISOLDE facility at CERN. The assignments were cross-checked with a time distribution analysis. This is the third identified case of beta-p-alpha emission. We discuss the systematic of beta-delayed particle emission decays, show that our observed decays fit naturally into the existing pattern, and argue that the patterns are to a large extent caused by odd-even effects.Comment: 6 pages, 5 figure

    Coherent and sequential photoassisted tunneling through a semiconductor double barrier structure

    Full text link
    We have studied the problem of coherent and sequential tunneling through a double barrier structure, assisted by light considered to be present All over the structure, i,e emitter, well and collector as in the experimental evidence. By means of a canonical transformation and in the framework of the time dependent perturbation theory, we have calculated the transmission coefficient and the electronic resonant current. Our calculations have been compared with experimental results turning out to be in good agreement. Also the effect on the coherent tunneling of a magnetic field parallel to the current in the presence of light, has been considered.Comment: Revtex3.0, 8figures uuencoded compressed tar-fil
    corecore