122 research outputs found

    Processing-structure-property relationships of electrospun PLA-PEO membranes reinforced with enzymatic cellulose nanofibers

    Get PDF
    Three different solvent mixtures were used to prepare electrospun membranes based on polylactic acid (PLA), polyethylene oxide (PEO) and enzymatic cellulose nanofibers (CNF). The materials were characterized from a morphological, spectroscopic, mechanical and rheological point of view. Furthermore, swelling test were performed in order to assess the water uptake of each sample. The results put into evidence that the choice of the solvents affects the structure and the properties of the membranes. Among the protocols tested, using chloroform/acetone/ethanol mixture was found to allow a high degree of CNF dispersion and a good electrospinnability of polymer solutions. These features led to membranes with impressive improvement of mechanical properties (+350% in stiffness, +350% in tensile strength and +500% in toughness) with respect to those of PLA/PEO and dramatically increased the water uptake of these materials (up to +350% within 120 min)

    Conducting polymer composite based on nano-cellulose for biosensing application

    Get PDF
    Application of conducting polymers of polypyrrole and polyaniline-cellulose nanocrystal based composite as electron-transfer pathways in enzyme electrodes was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC)-based composite as a novel immobilization membrane was prepared by chemical polymerization. Modified electrodes were prepared based on drop casting of nanocomposite suspension on the screen printed electrode (SPE) surface following by GOx immobilization. Field emission scanning electron microscopy (FESEM) images showed the porous structure of the nanocomposite with large surface area which could accommodate a large quantity of enzyme and allow the rapid diffusion of the active enzyme into the sensing membrane. The electrochemical and DPV responses of the GOx for glucose biosensor detection were examined in detail. The anodic current (Ip) in the voltammogram of the modified electrode prepared from PPy-CNC showed higher value compare to modified electrode prepared from pure polymer indicating CNC enhanced electron transferring and biosensor performance. The modified glucose biosensor exhibits a high sensitivity (ca. 0.73 μA.mM−1), with a dynamic response ranging from 1.0 to 20 mM glucose. The modified glucose biosensor exhibits a limit of detection (LOD) of (50±10) μM and also excludes interfering species, such as ascorbic acid, uric acid, and cholesterol, which makes this sensor suitable for glucose determination in real samples. This sensor displays an acceptable reproducibility and stability over time. The current response was maintained over 95% of the initial value after 17 days, and the current difference measurement obtained using different electrodes provided a relative standard deviation (RSD) of 4.47%

    Sonosynthesis of microcellulose from kenaf fiber: optimization of process parameters

    Get PDF
    Green composites using cellulose fibers as a reinforcement material provide a sustainable and renewable alternative to petroleum-based polymers. However, controlling the usage of chemicals and processing parameters to extract the cellulose could be sometimes difficult. Therefore, this study aims to optimize the conditions for extracting the microcellulose from kenaf fibers using central composite design (CCD), a statistical tool in design of experiments. Three factors and three levels were chosen for carrying out the analysis. The design was based on sodium hydroxide (NaOH) dosage, Sodium Chlorite (NaClO2) dosage and sonication time as independent variables, while dependent variables were the fiber size and degradation point. Later, size responses were fitted using quadratic polynomial model and degradation responses using 2-factor interaction model (2FI). The R2 values of 0.89 and 0.83 were obtained for the quadratic and the 2FI model, respectively. Further, surface morphology, thermal analysis, Fourier transform infrared (FTIR) spectroscopy and X-Ray diffraction (XRD) were also used for design validation. Optimal parameters for microcellulose extraction were found to be 0.15 g of NaOH at first stage, 4.6 mL of NaClO2 at second stage, and 10 min of sonication during third stage

    Preparation of cellulose nanofibers with hydrophobic surface characteristics.

    Get PDF
    The aim of this study was to develop cellulose nanofibers with hydrophobic surface characteristics using chemical modification. Kenaf fibers were modified using acetic anhydride and cellulose nanofibers were isolated from the acetylated kenaf using mechanical isolation methods. Fourier transform infrared spectroscopy (FTIR) indicated acetylation of the hydroxyl groups of cellulose. The study of the dispersion demonstrated that acetylated cellulose nanofibers formed stable, well-dispersed suspensions in both acetone and ethanol. The contact angle measurements showed that the surface characteristics of nanofibers were changed from hydrophilic to more hydrophobic when acetylated. The microscopy study showed that the acetylation caused a swelling of the kenaf fiber cell wall and that the diameters of isolated nanofibers were between 5 and 50 nm. X-ray analysis showed that the acetylation process reduced the crystallinity of the fibers, whereas mechanical isolation increased it. The method used provides a novel processing route for producing cellulose nanofibers with hydrophobic surfaces

    Biodegradable starch-based composites: effect of micro and nanoreinforcements on composite properties

    Get PDF
    Thermoplastic starch (TPS) matrix was reinforced with various kenaf bast cellulose nanofiber loadings (0–10 wt%). Thin films were prepared by casting and evaporating the mixture of aqueous suspension of nanofibers (NFs), starch, and glycerol which underwent gelatinization process at the same time. Moreover, raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The effects of filler type and loading on different characteristics of prepared materials were studied using transmission and scanning electron microscopies, X-ray diffractometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and moisture absorption analysis. Obtained results showed a homogeneous dispersion of NFs within the TPS matrix and strong association between the filler and matrix. Moreover, addition of nanoreinforcements decreased the moisture sensitivity of the TPS film significantly. About 20 % decrease in moisture content at equilibrium was observed with addition of 10 wt% NFs while this value was only 5.7 % for the respective RFs reinforced film
    corecore