917 research outputs found
Vibration suppression for monopile and spar-buoy offshore wind turbines using the structure-immittance approach
Offshore wind turbines have the potential to capture the high-quality wind resource. However, the significant wind and wave excitations may result in excessive vibrations and decreased reliability. To reduce vibrations, passive structural control devices, such as the tuned mass damper (TMD), have been used. To further enhance the vibration suppression capability, inerter-based absorbers (IBAs) have been studied using the structure-based approach, that is, proposing specific stiffness-damping-inertance elements layouts for investigation. Such an approach has a critical limitation of being only able to cover specific IBA layouts, leaving numerous beneficial configurations not identified. This paper adopts the newly introduced structure-immittance approach, which is able to cover all network layout possibilities with a predetermined number of elements. Linear monopile and spar-buoy turbine models are first established for optimisation. Results show that the performance improvements can be up to 6.5% and 7.3% with four and six elements, respectively, compared with the TMD. Moreover, a complete set of beneficial IBA layouts with explicit element types and numbers have been obtained, which is essential for next-step real-life applications. In order to verify the effectiveness of the identified absorbers with OpenFAST, an approach has been established to integrate any IBA transfer functions. It has been shown that the performance benefits preserve under both the fatigue limit state (FLS) and the ultimate limit state (ULS). Furthermore, results show that the mass component of the optimum IBAs can be reduced by up to 25.1% (7,486âkg) to achieve the same performance as the TMD
Model-based Aeroservoelastic Design and Load Alleviation of Large Wind Turbine Blades
This paper presents an aeroservoelastic modeling approach for dynamic load alleviation
in large wind turbines with trailing-edge aerodynamic surfaces. The tower, potentially on a
moving base, and the rotating blades are modeled using geometrically non-linear composite
beams, which are linearized around reference conditions with arbitrarily-large structural
displacements. Time-domain aerodynamics are given by a linearized 3-D unsteady vortexlattice
method and the resulting dynamic aeroelastic model is written in a state-space
formulation suitable for model reductions and control synthesis. A linear model of a single
blade is used to design a Linear-Quadratic-Gaussian regulator on its root-bending moments,
which is finally shown to provide load reductions of about 20% in closed-loop on the full
wind turbine non-linear aeroelastic model
Investigation of potential extreme load reduction for a two-bladed upwind turbine with partial pitch
This paper presents a wind turbine concept with an innovative design combining partial pitch with a two-bladed (PP-2B) turbine configuration. Special emphasis is on extreme load reduction during storm situations at standstill, but operational loads are also investigated. In order to compare the loads and dynamics of the PP-2B turbine, a partial pitch three-bladed (PP-3B) turbine and a normal pitch regulated three-bladed (3B) turbine are introduced on the basis of solidity similarity scaling. From the dynamic comparisons between two- and three-bladed turbines, it has been observed that the blade vibrations are transferred differently from the rotor to the tower. For a three-bladed turbine, blade vibrations seen in a fixed frame of reference are split with ±1P only. A two-bladed turbine has a similar split of ±1P but also includes contributions on higher harmonics (±2P, ±3P, ... etc.). Further on, frequency split is also seen for the tower vibrations, where an additional ±2P contribution has been observed for the two-bladed turbine. Regarding load comparisons, the PP-2B turbine produces larger tower load variations because of 2P excitation during the operational cases. However, extreme loads are reduced by approximately 20% for the PP-2B and 18% for the PP-3B compared with the 3B turbine for the parked condition in a storm situation. Moreover, a huge potential of 60% is observed for the reduction of the extreme tower bottom bending moment for the PP-2B turbine, when the wind direction is from ±90° to the turbine, but this also requires that the turbine is parked in a T-configuration
Numerical Stability and Accuracy of Temporally Coupled Multi-Physics Modules in Wind Turbine CAE Tools
In this paper we examine the stability and accuracy of numerical algorithms for coupling time-dependent multi-physics modules relevant to computer-aided engineering (CAE) of wind turbines. This work is motivated by an in-progress major revision of FAST, the National Renewable Energy Laboratory's (NREL's) premier aero-elastic CAE simulation tool. We employ two simple examples as test systems, while algorithm descriptions are kept general. Coupled-system governing equations are framed in monolithic and partitioned representations as differential-algebraic equations. Explicit and implicit loose partition coupling is examined. In explicit coupling, partitions are advanced in time from known information. In implicit coupling, there is dependence on other-partition data at the next time step; coupling is accomplished through a predictor-corrector (PC) approach. Numerical time integration of coupled ordinary-differential equations (ODEs) is accomplished with one of three, fourth-order fixed-time-increment methods: Runge-Kutta (RK), Adams-Bashforth (AB), and Adams-Bashforth-Moulton (ABM). Through numerical experiments it is shown that explicit coupling can be dramatically less stable and less accurate than simulations performed with the monolithic system. However, PC implicit coupling restored stability and fourth-order accuracy for ABM; only second-order accuracy was achieved with RK integration. For systems without constraints, explicit time integration with AB and explicit loose coupling exhibited desired accuracy and stability
Autonomous decision-making against induced seismicity in deep fluid injections
The rise in the frequency of anthropogenic earthquakes due to deep fluid
injections is posing serious economic, societal, and legal challenges to
geo-energy and waste-disposal projects. We propose an actuarial approach to
mitigate this risk, first by defining an autonomous decision-making process
based on an adaptive traffic light system (ATLS) to stop risky injections, and
second by quantifying a "cost of public safety" based on the probability of an
injection-well being abandoned. The ATLS underlying statistical model is first
confirmed to be representative of injection-induced seismicity, with examples
taken from past reservoir stimulation experiments (mostly from Enhanced
Geothermal Systems, EGS). Then the decision strategy is formalized: Being
integrable, the model yields a closed-form ATLS solution that maps a risk-based
safety standard or norm to an earthquake magnitude not to exceed during
stimulation. Finally, the EGS levelized cost of electricity (LCOE) is
reformulated in terms of null expectation, with the cost of abandoned
injection-well implemented. We find that the price increase to mitigate the
increased seismic risk in populated areas can counterbalance the heat credit.
However this "public safety cost" disappears if buildings are based on
earthquake-resistant designs or if a more relaxed risk safety standard or norm
is chosen.Comment: 8 pages, 4 figures, conference (International Symposium on Energy
Geotechnics, 26-28 September 2018, Lausanne, Switzerland
- âŠ