6 research outputs found

    Long-Term Simulation of Daily Streamflow Using Radar Rainfall and the SWAT Model: A Case Study of the Gamcheon Basin of the Nakdong River, Korea

    Get PDF
    In recent years, with the increasing need for improving the accuracy of hydrometeorological data, interests in rain-radar are also increasing. Accordingly, with high spatiotemporal resolution of rain-radar rainfall data and increasing accumulated data, the application scope of rain-radar rainfall data into hydrological fields is expanding. To evaluate the hydrological applicability of rain-radar rainfall data depending on the characteristics of hydrological model, this study applied Rgauge and Rradar to a SWAT model in the Gamcheon stream basin of the Nakdong River and analyzed the effect of rainfall data on daily streamflow simulation. The daily rainfall data for Rgauge, RZ, and RKDP were utilized as input data for the SWAT model. As a result of the daily runoff simulation for analysis periods using RZ(P) and RKDP(P), the simulation which utilized Rgauge reflected the rainfall-runoff characteristics better than the simulations which applied RZ(P) or RKDP(P). However, in the rainy or wet season, the simulations which utilized RZ(P) or RKDP(P) were similar to or better than the simulation that applied Rgauge. This study reveals that analysis results and degree of accuracy depend significantly on rainfall characteristics (rainy season and dry season) and QPE algorithms when conducting a runoff simulation with radar

    Identifying and Evaluating Chaotic Behavior in Hydro-Meteorological Processes

    Get PDF
    The aim of this study is to identify and evaluate chaotic behavior in hydro-meteorological processes. This study poses the two hypotheses to identify chaotic behavior of the processes. First, assume that the input data is the significant factor to provide chaotic characteristics to output data. Second, assume that the system itself is the significant factor to provide chaotic characteristics to output data. For solving this issue, hydro-meteorological time series such as precipitation, air temperature, discharge, and storage volume were collected in the Great Salt Lake and Bear River Basin, USA. The time series in the period of approximately one year were extracted from the original series using the wavelet transform. The generated time series from summation of sine functions were fitted to each series and used for investigating the hypotheses. Then artificial neural networks had been built for modeling the reservoir system and the correlation dimension was analyzed for the evaluation of chaotic behavior between inputs and outputs. From the results, we found that the chaotic characteristic of the storage volume which is output is likely a byproduct of the chaotic behavior of the reservoir system itself rather than that of the input data

    Hydrological Modeling Approach Using Radar-Rainfall Ensemble and Multi-Runoff-Model Blending Technique

    No full text
    The purpose of this study is to reduce the uncertainty in the generation of rainfall data and runoff simulations. We propose a blending technique using a rainfall ensemble and runoff simulation. To create rainfall ensembles, the probabilistic perturbation method was added to the deterministic raw radar rainfall data. Then, we used three rainfall-runoff models that use rainfall ensembles as input data to perform a runoff analysis: The tank model, storage function model, and streamflow synthesis and reservoir regulation model. The generated rainfall ensembles have increased uncertainty when the radar is underestimated, due to rainfall intensity and topographical effects. To confirm the uncertainty, 100 ensembles were created. The mean error between radar rainfall and ground rainfall was approximately 1.808–3.354 dBR. We derived a runoff hydrograph with greatly reduced uncertainty by applying the blending technique to the runoff simulation results and found that uncertainty is improved by more than 10%. The applicability of the method was confirmed by solving the problem of uncertainty in the use of rainfall radar data and runoff models

    Case Study: On Objective Functions for the Peak Flow Calibration and for the Representative Parameter Estimation of the Basin

    No full text
    The objective function is usually used for verification of the optimization process between observed and simulated flows for the parameter estimation of rainfall–runoff model. However, it does not focus on peak flow and on representative parameter for various rain storm events of the basin, but it can estimate the optimal parameters by minimizing the overall error of observed and simulated flows. Therefore, the aim of this study is to suggest the objective functions that can fit peak flow in hydrograph and estimate the representative parameter of the basin for the events. The Streamflow Synthesis And Reservoir Regulation (SSARR) model was employed to perform flood runoff simulation for the Mihocheon stream basin in Geum River, Korea. Optimization was conducted using three calibration methods: genetic algorithm, pattern search, and the Shuffled Complex Evolution method developed at the University of Arizona (SCE-UA). Two objective functions of the Sum of Squared of Residual (SSR) and the Weighted Sum of Squared of Residual (WSSR) suggested in this study for peak flow optimization were applied. Since the parameters estimated using a single rain storm event do not represent the parameters for various rain storms in the basin, we used the representative objective function that can minimize the sum of objective functions of the events. Six rain storm events were used for the parameter estimation. Four events were used for the calibration and the other two for validation; then, the results by SSR and WSSR were compared. Flow runoff simulation was carried out based on the proposed objective functions, and the objective function of WSSR was found to be more useful than that of SSR in the simulation of peak flow runoff. Representative parameters that minimize the objective function for each of the four rain storm events were estimated. The calibrated observed and simulated flow runoff hydrographs obtained from applying the estimated representative parameters to two different rain storm events were better than those retrieved from parameters estimated using a single rain storm event. The results of this study demonstrated that WSSR is adequate in peak flow simulation, that is, the estimation of peak flood runoff. In addition, representative parameters can be applied to a flow runoff simulation for rain storm events that were not involved in parameter estimation

    A Regionalization of Downscaled GCM Data Considering Geographical Features in a Mountainous Area

    Get PDF
    This study establishes a methodology for the application of downscaled GCM data in a mountainous area having large spatial variations of rainfall and attempts to estimate the change of rainfall characteristics in the future under climate change. The Namhan river basin, which is in the mountainous area of the Korean peninsula, has been chosen as the study area. neural network-simple kriging with varying local means (ANN-SKlm) has been built by combining the artificial neural network, which is one of the general downscaling techniques, with the SKlm regionalization technique, which can reflect the geomorphologic characteristics. The ANN-SKlm technique was compared with the Thiessen technique and the ordinary kriging (OK) technique in the study area and the SKlm technique showed the best results. Future rainfall levels have been predicted by downscaling the data from CNRM-CM3 climate model, which was simulated under the A1B scenario. According to the results of future annual average rainfall by each regionalization technique, the Thiessen and OK techniques underestimated the future rainfall when compared to the ANN-SKlm technique. Therefore this methodology will be very useful for the prediction of future rainfall levels under climate change, most notably in a mountainous area
    corecore