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In recent years, with the increasing need for improving the accuracy of hydrometeorological data, interests in rain-radar are
also increasing. Accordingly, with high spatiotemporal resolution of rain-radar rainfall data and increasing accumulated data, the
application scope of rain-radar rainfall data into hydrological fields is expanding. To evaluate the hydrological applicability of rain-
radar rainfall data depending on the characteristics of hydrological model, this study applied 𝑅gauge and 𝑅radar to a SWAT model
in the Gamcheon stream basin of the Nakdong River and analyzed the effect of rainfall data on daily streamflow simulation. The
daily rainfall data for 𝑅gauge, 𝑅𝑍, and 𝑅𝐾DP were utilized as input data for the SWATmodel. As a result of the daily runoff simulation
for analysis periods using 𝑅

𝑍(P) and 𝑅𝐾DP(P), the simulation which utilized 𝑅gauge reflected the rainfall-runoff characteristics better
than the simulations which applied 𝑅

𝑍(P) or 𝑅𝐾DP(P). However, in the rainy or wet season, the simulations which utilized 𝑅
𝑍(P)

or 𝑅
𝐾DP(P) were similar to or better than the simulation that applied 𝑅gauge. This study reveals that analysis results and degree of

accuracy depend significantly on rainfall characteristics (rainy season and dry season) and QPE algorithms when conducting a
runoff simulation with radar.

1. Introduction

With the influence of climate change and climate variability,
the magnitude and frequency of extreme hydrological events
increase, which makes the world suffer from natural disasters
such as floods, droughts, landslides, avalanches, and so forth.
Particularly in Korea, people are suffering from localized
heavy rainfall and flash flood in some years and from severe
drought in other years. Therefore, a study on a more accurate
and comprehensive analysis and prediction is required in
order to adapt to climate change and climate variability and
reduce human life and property damages from floods or
droughts caused by extreme hydrological events. To this end,
the necessity of high-resolution hydrometeorological data

with high accuracy is emphasized. In particular, rainfall is
used as basic data for all interpretations related to hydrologic
cycle and the water resources plan and management and also
has a nonlinear relationship with other hydrological factors
and environmental ones (i.e., runoff, soil moisture, erosion,
water quality, etc.) [1]. For this reason, acquiring exact rainfall
data is very important.

In a runoff simulation for the analysis of floods and
droughts, rainfall is used as input data for rainfall-runoff
model and many studies have been conducted for measur-
ing exact rainfall in terms of time and space. Particularly
for improving the accuracy of the spatiotemporal rainfall,
hydrological and meteorological fields have recently paid
more interest in estimating the precipitation data with a new
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Remote Sensing Technology including rain or weather radar
(in the following, we will frequently omit the term “rain” or
“weather”) and artificial satellite.

In particular, radar data has advantages in that it can
continue to provide rainfall information with high spatial
and temporal resolutions. In early times of rainfall obser-
vation using radar, the rainfall intensity can be determined
from the horizontal reflectivity (𝑍H) observed using single-
polarization radar. However, there is difficulty in measuring
rainfall because its changing characteristics can vary depend-
ing on the type of clouds or developmental conditions, tem-
poral and spatial location, and type of hydrometer. It has since
become possible to measure various dual-polarization vari-
ables (𝑍H, 𝑍V, 𝑍DR, 𝐾DP, 𝜌HV, etc.) using dual-polarization
radar. In this process, precipitation estimation techniques can
be developed.

Due to the advantages of radar, many studies in hydrolog-
ical and meteorological fields that utilize radar data are being
actively carried out. Utilization of radar data can be largely
divided into two aspects. The first is general radar image
data which analyzes the current status of rainfall and the
second is grid-type rainfall distribution data for calculating
flood flow [2]. In hydrological fields, twomajor research areas
include hydrologic phenomena in various basins (including
natural basins and urban basins) [2–15] and the spatial and
temporal variability of rainfall [16, 17]. To evaluate previous
studies which applied radar rainfall data to the Soil & Water
Assessment Tool (SWAT) rainfall-runoff model used in this
study, Di Luzio and Arnold [18] applied NEXRAD Stage
III data to the SWAT model as part of the Distributed
Model Intercomparison Project (DMIP) to carry out the first
simulation of daily runoff and Jayakrishnan et al. [19] used
WSR-88D data obtained from the Sondu River in Kenya to
carry out a simulation of runoff and water quality. Recently,
Jeong et al. [20] used CAPPI data of single-polarization radar
to measure the optimal grid size for radar reflectivity and
used the SWATmodel and as a result of the runoff simulation
proposed the optimal grid size of radar rainfall data in the
applicable basin to be 4–8 km. Furthermore, Sexton et al. [21]
and Price et al. [22] used the SWAT model to compare the
runoff discharge from NEXRAD data with that from rain
gauge data and suggested that radar rainfall data could be
utilized in a useful way in basins where rain gauge data is
insufficient.

As shown above, previous studies have presented various
evaluation results of the hydrological applicability of radar
rainfall data depending on the radar data used, target area,
and hydrologicalmodel applied. However,most of the studies
have largely focused on short duration rainfall events or long-
term runoff simulation for about a month or a season using
radar data. In other words, there are few studies on the
hydrological applicability in terms of long-term runoff for
water resource management. However, the accumulated rain
radar rainfall data are considered to be used sufficiently for a
long-term hydrologic analysis.

Therefore, this study aims to review the hydrological
applicability of radar rainfall data in a long-term runoff
analysis for more than one year with the characteristics of
single- and dual-polarization radar rainfall data.

To this end, the procedure employed in this study consists
of the following steps:

(1) Collect hydrometeorological input data on hydrolog-
ical systems in the basin.

(2) Create single-polarization rain radar-derived rainfall
(𝑅
𝑍(P)) and dual-polarization rain radar-derived rain-

fall (𝑅
𝐾DP(P)) and compare/analyze rain gauge data

(𝑅gauge).
(3) Build the SWAT model and conduct calibration and

validation as well as runoff simulation over the anal-
ysis period utilizing 𝑅gauge, 𝑅𝑍(P), and 𝑅𝐾DP(P) as input
data.

(4) Analyze the characteristics and applicability of 𝑅gauge,
𝑅
𝑍(P), and 𝑅𝐾DP(P) in long-term runoff analysis.

2. Study Area and Rainfall Data

2.1. Study Area. In this study, the Gamcheon stream basin of
the Nakdong River in Korea (see Figure 1) was selected as the
area of study to evaluate the hydrologic applicability of radar
rainfall data. The Gamcheon stream is the first tributary of
the Nakdong River and its stream length is 69 km. The area
of the Gamcheon stream basin is about 1,005.3 km2 and it
occupies about 4.3% of the Nakdong River basin. The basin
is a dendritic form basin. Relatively wider alluvial plains are
developed midsteam and downstream in the form of a basin
surrounded by hilly mountains.The average channel width is
about 230–350m and the bed slope is about 0.0021–0.0014.
Toward the upper stream, the bed slope tends to increase.
The average annual rainfall is about 1,100mm.TheGamcheon
stream basin has no influx of streamflows from other basins
and there are few impacts due to artificial variations of the
streamflow.

2.2. Rain Gauge Data (𝑅gauge) and Radar Rainfall Data
(𝑅
𝑍(P), 𝑅𝐾DP(P)). To compare the applied hydrological simu-

lations which utilized 𝑅radar, rainfall data at 5 rain gauge sta-
tions within the basinwere collected from theWaterManage-
ment Information System (WAMIS) operated by theMinistry
of Land, Infrastructure, and Transport (MOLIT) from 2010
to 2012 (Figure 1). In Korea, MOLIT, Korea Meteorological
Administration (KMA), KoreaWater Resources Corporation
(K-water), and Korea Rural Community Corporation (KRC)
carry out hydrologic observations for their own purposes, but
the hydrological observation is largely supervised byMOLIT,
which is responsible for flood forecasting and warning as well
as water management.

In this study, the radar data used was the Mt. Bisl rain
radar data fromMOLIT (Figure 1).MOLIT constructs a radar
rainfall estimation systemby carrying out a series of processes
including quality control of radar data and application of
Quantitative Precipitation Estimation (QPE) algorithms and
provides rain radar-derived rainfall data.

The major procedures includes (1) import of observed
radar data, (2) data quality control (removal of nonmeteo-
rologic echoes), (3) creation of radar rainfall field (3 types
of spatial fields: LEMAP (Lowest Elevation MAP), PPI (Plan
Position Indicator), and CAPPI (Constant Altitude Plan
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Figure 1: Study basin.

Position Indicator)), (4) radar rainfall estimation (3 types of
algorithms:𝑅

𝑍
,𝑅
𝑍DR, and𝑅𝐾DP), (5) radar rainfall adjustment

using ground rainfall, (6) calculation of point rainfall and
areal rainfall of subwatershed using adjusted radar rainfall,
and (7) storage of rainfall data in a DB system. In particular,
LEMAP (Lowest ElevationMAP) shows a radar Rrinfall field
based on the radar reflectivity data observed at a very close
altitude from the ground. Figure 2 represents the procedure
of the radar rainfall estimation system currently employed by
MOLIT.

In this study, we applied the following rainfall estimation
algorithms to compare the hydrological applicability of𝑅radar.
First, 𝑅

𝑍
and 𝑅

𝐾DP
are calculated using (1) and (2). Equation

(1) has the same shape as the existing single-polarization with
the so-called 𝑍-𝑅 relationship (𝑍 = 𝑎𝑅𝑏):

𝑅
𝑍
= 1.70 × 10

−2
× 𝑍
0.714
. (1)

The inverse of this equation is 𝑍 = 300𝑅1.4. Herein,
𝑍 is the reflectance of radar in the horizontal direction
observed with single-polarization radar, 𝑍H. Equation (1) is
an empirical equation appropriate for rainfall types between
straight form rainfall and convective rainfall, which are at
intermediate level or higher in terms of rainfall intensity
according to the characteristics of rainfall in the summer [23].

Next, (2) and (3) were proposed by Ryzhkov et al.
[24] as a prototype for dual-polarization radar of WSR-
88D in the United States. Generally, the radar reflectivity
(𝑍), differential reflectivity (𝑍DR), and specific differential
phase shift (𝐾DP) are used in dual-polarization radar rainfall
estimation. Also, the drop size distribution (DSD) depends
on the rain intensity.Therefore, to adjust for any errors in the
process of obtaining 𝑅

𝐾DP
, each formula used depends on the

rain intensity calculated by 𝑅
𝑍
, as shown in (3) [24]. One has

𝑅
𝐾DP
= 44.0
󵄨󵄨󵄨󵄨𝐾DP
󵄨󵄨󵄨󵄨

0.822
× sign (𝐾DP) , (2)

𝑅 =
𝑅
𝑍

𝑓
1
(𝑍DR)

if 𝑅
𝑍
< 6mm/h,

𝑅 =

𝑅
𝐾DP

𝑓
2
(𝑍DR)

if 6 < 𝑅
𝑍
< 50mm/h,

𝑅 = 𝑅
𝐾DP

if 𝑅
𝑍
> 50mm/h,

(3)

𝑓
1
(𝑍DR) = 0.4 + 5.0

󵄨󵄨󵄨󵄨𝑍dr − 1
󵄨󵄨󵄨󵄨

1.3
,

𝑓
2
(𝑍DR) = 0.4 + 3.5

󵄨󵄨󵄨󵄨𝑍dr − 1
󵄨󵄨󵄨󵄨

1.7
,

𝑍dr = 10
0.1𝑍DR (dB).

(4)
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Figure 2: Radar data quality control and rainfall estimation procedures employed by MOLIT.

Here, 𝑓
1
and 𝑓

2
, the functions of 𝑅

𝑍
and 𝑅

𝐾DP
, are

determined by utilizing (1), (2), and (4) and the reflectivity,
𝑓
1
(𝑍DR) and 𝑓2(𝑍DR), where 𝑍dr is an adjustment factor

depending on the shape of the drop size.
In this study, single-polarization rain radar-derived rain-

fall which considers the reflectivity (𝑍) and can be described
by (1) alone and dual-polarization rain radar-derived rainfall
which involves all of the dual-polarization variables shown
in (1) to (4) expressed as 𝑅

𝐾DP
, 𝑅
𝑍
, and 𝑅

𝐾DP
were utilized.

The rainfall intensity (mm/hr) had an observational radius
of 150 km, a temporal resolution of 2.5min, and a spatial
resolution of 125m × 125m while applying the rainfall
estimation algorithms shown above. To utilize as input data
in the SWAT model, 𝑅

𝑍
and 𝑅

𝐾DP
data were converted to

daily rainfall by multiplying the rate of the observational
cycle (2.5min) and time. In this case, radar-derived point
rainfall data (𝑅

𝑍(P), 𝑅𝐾DP(P)) that belongs to the subbasin were
recreated (Figure 4).

3. SWAT Model

3.1. SWAT Model and Input Data Buildup. The SWAT (Soil
andWater Assessment Tool) model is a unit model of a basin
developed by the USDAAgricultural Research Service (ARS)
[26, 27]. In particular, the SWAT model has advantages in
that it can allow a hydrologic analysis of ungauged basins
by conducting a predictive simulation of long-term rainfall-
runoff and sediment movement within the basin. It also
has the ability to quantify relative effects of water quality
depending on forms of cultivation and climate/vegetation
changes. To make a temporal/spatial analysis of hydrology
and water quality using the SWAT model, it is necessary

to obtain meteorological data that changes over time (daily
amount of precipitation, temperature, wind speed, amount of
sunshine, and relative humidity), the current status of land
use spatially, soil attributes, and the Digital Elevation Model
(DEM). The SWAT model is widely used because it is easy
to generate major input values and it is possible to analyze
the runoff of rainfall in basins, the occurrence of nonpoint
pollution, and temporal/spatial changes.

In this study, the DEM was set at 30m × 30m so that
runoff of rainfall in the basins and actual stream within
the basins can be well reproduced. As a land use map, the
1 : 25,000 classification land usemap provided byWAMISwas
used. As a soil map, the 1 : 50,000 reconnaissance soil map
provided byWAMISwas used.Meteorological data including
the mean daily wind speed (m/sec), daily average relative
humidity (%), daily maximum/minimum temperature (∘C),
and daily quantity of horizontal solar radiation (MJ/m2) were
obtained from western meteorological observing stations.
Table 1 summarizes the input and output data of the SWAT
model.

3.2. Model Parameter Calibration and Validation. To correct
the parameters, we applied a trial-and-error method and
calibration tool to increase the predictive accuracy of runoff
discharge in the SWAT model. If the calibration procedure
is properly planned, daily data collected over the course of
one year is sufficient for the model calibration to obtain
conceptually realistic estimates. In addition, the use of older
data does not greatly influence the adjustment of parameters
[28]. The periods of correction and calibration were 2010
and 2011, respectively, and the ground rainfall data and
daily discharge data within basins used for the periods of
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correction, calibration, and simulation were provided by
WAMIS and the Korea Hydrological Survey Center (KHSC).

As CANMX, CN2, ESCO, GW REVAP, SOL AWC,
SOL K, REVAPMN, and GWQMN among the parameters
related to runoff discharge in the SWAT model react sensi-
tively, CN2 was adjusted to correct observational values of
the runoff discharge. In addition, to correct the base runoff,
the parameters related to underground water (GW REVAP,
REVAPMN, and GWQMN) were calibrated. In other words,
if the base runoff is simulated to be higher, GW REVAP and
GWQMN are increased and REVAPMN is reduced. If base
runoff is simulated to be lower, the coefficients are calibrated
reversely. The range of parameters and the shape of the input
data are summarized in Table 2.

3.3. Model Applicability Evaluation Index. In this study, to
evaluate the applicability of the SWAT model for the calibra-
tion, validation, and simulation periods, the Nash-Sutcliffe
efficiency (NSE), percent bias (PBIAS (%)), and RMSE-
observations standard deviation ratio (RSR) were used. To
determine the optimal value of each index, NSE = 1, PBIAS =
0, and RSR = 0, as shown in (3)–(5).The NSE is a normalized
statistic that determines the relativemagnitude of the residual
variance (“noise”) compared to the measured data variance
(“information”) [29]. PBIAS measures the average tendency
of the simulated data to be larger or smaller than their
observed counterparts [30]. RSR was calculated as the ratio
of the RMSE and standard deviation of measured data [25]:

NES = 1 − [

[

∑
𝑛

𝑖=1
(𝑄

obs
𝑖
− 𝑄

sim
𝑖
)
2

∑
𝑛

𝑖=1
(𝑄

obs
𝑖
− 𝑄mean)

2

]

]

, (5)

PBIAS = [

[

∑
𝑛

𝑖=1
(𝑄

obs
𝑖
− 𝑄

sim
𝑖
)
2

∗ 100

∑
𝑛

𝑖=1
(𝑄

obs
𝑖
)

]

]

, (6)

RSR = RMSE
STDEVobs

=

[√∑
𝑛

𝑖=1
(𝑄

obs
𝑖
− 𝑄

sim
𝑖
)
2

]

[√∑
𝑛

𝑖=1
(𝑄

obs
𝑖
− 𝑄

mean
𝑖
)
2

]

. (7)

Herein, 𝑄obs
𝑖

is the 𝑖th observed streamflow, 𝑄sim
𝑖

is the
𝑖th simulated streamflow, 𝑄mean is the mean of the observed
streamflow, and 𝑛 is the total number of observations.

Ramanarayanan et al. [31] suggested that if 𝑅2 is 0.5 or
higher and NES is 0.4 or higher, the model simulates natural
phenomenon well. Moriasi et al. [25] claimed that, based on
examples of existing various models and research data, index
values of the model simulation of NSE > 0.50, RSR < 0.70,
and PBIAS ± 25% are satisfactory. In particular, Moriasi et al.
[25] proposed the criteria for setting the general performance
rating in the model of runoff discharge, as shown in Table 3.
This criteria is based on monthly unit runoff discharge, but
the model simulation is poorer with a shorter time step than
a longer time step (e.g., daily versus monthly or yearly) [32].
Therefore, these criteria can be used to evaluate the results
of calibration, validation, and simulation obtained in this
study.

Table 1: Input and output data of the SWAT model.

SWAT input data

Temporal analysis

Precipitation
Temperature
Wind speed

Solar radiation
Relative humidity

Spatial analysis
Land use

Soil
Topography

SWAT output data

Daily/monthly/yearly

Runoff/soil erosion/water quality for
HRU

Runoff/soil erosion/water quality for
subwatershed

Runoff/soil erosion/water quality for each
segment

3.4. Application of Radar Rainfall Data in the SWAT Model.
A rainfall station should be installed to represent the local
distribution of rainfall in a basin. In this case, five rainfall sta-
tions (Seonsan, Gimcheon, Jirye, Buhang 1, and Buhang 2) are
located in the Gamcheon stream basin of the Nakdong River
and the density of rainfall station is about 201.1 km2/station
(basin area is 1,005.3 km2). This density of the rainfall station
is above the minimum criteria recommended by World
Metrological Organization (WMO) (mountains and hills:
250–575 km2/station), but it is not sufficient for the criteria
for flood forecasting and warning (generally, 50 km2/station)
recommended by the Design Criteria Rivers Commentary
of Korea Water Resources Association (KWRA) [33]. This
study aimed to propose the method(s) to compensate the
problems occurring during hydrologic analysis by using a
semidistributed model, which might appear due to intermit-
tence of rain gauge. In other words, it is to generate rain radar
data at the applicable site by using rain radar rainfall data if
rain radar rainfall data at the site without rain gauge data are
required.

Radar-derived rainfall data can be used in a useful way in
basins where ground observation data (rainfall station) is not
sufficiently guaranteed. Therefore, this study creates radar-
derived point rainfall data (𝑅

𝑍(P); 𝑅𝐾DP(P)) at central points
of 42 subbasins divided when building the SWAT model to
demonstrate the advantages of radar-derived rainfall data.

In other words, the SWAT model uses the closest rain
gauge station (Buhang 1 station) to interpret #7 subbasin (#7
basin is at the utmost bottom of the figure), as shown in
Figure 3(b). Therefore, it is difficult to simulate appropriate
runoff discharge if there is difficulty in taking into account
the temporal and spatial characteristics of rainfall because the
size of basin is large or there are not many rain gauge stations
in the basin.

4. Results and Discussion

In this study, we utilized 2012 as the year for simulation taking
into account the observation period and accuracy of each
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Table 2: Range and input data of the SWAT model parameters.

Variable name Definition Range Input file
GW DELAY Groundwater Delay time 0–500 ∗.gw
ALPHA BF Baseflow Alpha Factor 0-1 ∗.gw
GW REVAP Groundwater “revap” coefficient 0.02–0.2 ∗.gw

GWQMN Threshold depth of water in the shallow aquifer required for return
flow to occur 0–5,000 ∗.gw

REVAPMN Threshold depth of water in the shallow aquifer for “revap” to occur 0–500 ∗.gw
ESCO Soil evaporation compensation factor 0.01–1.0 ∗.hru
SLSOIL Slope length for lateral subsurface flow 0–10 ∗.hru
LET TIME Lateral flow travel time 0–10 ∗.hru
LET SED Sediment concentration in lateral and groundwater flow 0–10 ∗.hru
CH K(2) Effective hydraulic conductivity in main channel alluvium −0.01–150 ∗.rte
CH N(2) Manning’s “𝑛” value for the main channel 0–0.3 ∗.rte
CN2 SCS Curve Number 30–98 ∗.mgt
SOL AWC Available water capacity 0-1 ∗.sol
SOL K Saturated hydraulic conductivity 0–2,000 ∗.sol

MSK CO2 Calibration coefficient used to control the impact of the storage time
constant for low flow 0–10 ∗.bsn

SURLAG Surface runoff lag time 1–24 ∗.bsn
SFTMP Snowfall temperature −5–5 ∗.bsn
SMTMP Snow melt base temperature −5–5 ∗.bsn
SMFMX Melt factor for snow on June 21 1.7–6.5 ∗.bsn
SMFMN Melt factor for snow on December 21 1.7–6.5 ∗.bsn

Table 3: General performance ratings for a monthly time step.

Performance rating RSR NSE PBIAS (%)
Very gooda 0.00 ≤ RSR ≤ 0.50 0.75 < NSE ≤ 1.00 PBIAS < ±10
Gooda 0.50 < RSR ≤ 0.60 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15
Satisfactorya 0.60 < RSR ≤ 0.70 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS < ±25
Unsatisfactorya RSR > 0.70 NSE ≤ 0.50 PBIAS ≥ ±25
a[25].

data set, established the SWAT model in the basins prior to
runoff simulation, and created 𝑅

𝑍(P) and 𝑅𝐾DP(P), as shown in
Figure 3. In addition, we made a simple comparative analysis
of 𝑅
𝑍(P), 𝑅𝐾DP(P), and 𝑅gauge.

4.1. Comparison of Rainfall Data. Figure 4 represents the
results of the comparison of the basin average rainfall accu-
mulated for the period of simulation (2012).

As a result of comparing the average basin rainfall
accumulated during the period of simulation (2012), 𝑅gauge
is 1,281.4mm and 𝑅

𝑍(P) and 𝑅𝐾DP(P) are 1,272.6mm and
1,450.6mm, respectively. Compared to the ground observa-
tion rainfall, 𝑅

𝑍(P) is underestimated by about 0.7% (8.8mm)
and 𝑅

𝐾DP(P) is overestimated about 13.2% (169.2mm). In
the scatter plot which shows the accumulated rainfall and
correlation of 𝑅gauge and 𝑅𝑍(P) or 𝑅𝐾DP(P) (inside Figure 4),
the correlation coefficients and root-mean-square deviation
error values between 𝑅

𝑍(P) or 𝑅𝐾DP(P) and 𝑅gauge are 0.968
and 0.976 and 2.926 and 2.848, respectively. This suggests
that the values obtained for 𝑅

𝐾DP(P) are better. However, as

a result of comparing the rainfall of the Nile depending on
the period, 𝑅

𝑍(P) and 𝑅𝐾DP(P) represent the characteristics
of rainfall in the rainy or wet season (heavy rainfall and
in the summer when typhoons occur frequently: Jun. to
Sept.) relatively well but are overestimated in the dry season
(periods other than the rainy or wet season: spring, fall, and
winter). In particular, in the dry season, the PBIAS results
utilizing 𝑅

𝑍(P) and 𝑅𝐾DP(P) are in the range of about 11% to
37% (overestimated). Given that the annual PBIAS is about
0.7% to 13.2%, 𝑅

𝑍(P) and 𝑅𝐾DP(P) are very low in terms of
accuracy for rainfall estimation in dry seasons (Table 4).
Tables 5 and 6 show data for the ten (10) days in which
daily rainfall data of 𝑅

𝑍(P) and 𝑅𝐾DP(P) are overestimated and
underestimated themost compared to𝑅gauge. As shown in the
overestimation list, 𝑅

𝐾DP(P) has higher variations except for
the abnormal observation at 𝑅

𝑍(P) (Sept. 12, 2012) and in the
underestimation list, 𝑅

𝑍(P) has higher variations.

4.2. Simulated Streamflow Results. As mentioned earlier, the
entire period of analysis (2010 to 2013) was divided into
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Table 4: Summary of the statistics of basin average rainfall for the different rainfall data types.

Classification Accumulated rainfall (mm) CC RMSE 𝑅
2 PBIAS (%)

𝑅gauge 𝑅
𝑍(P) 𝑅

𝐾DP(P) 𝑅
𝑍(P) 𝑅𝐾DP(P) 𝑅𝑍(P) 𝑅𝐾DP(P) 𝑅𝑍(P) 𝑅𝐾DP(P) 𝑅𝑍(P) 𝑅𝐾DP(P)

Simulation period
(2012/1-2012/12) 1,281.4 1,272.6 1,450.6 0.968 0.976 2.926 2.848 0.936 0.953 0.69 −13.20

Rainy period
(2012/6, 7, 8, 9) 940.8 906.9 1,001.2 0.977 0.988 3.880 3.251 0.955 0.975 4.52 −5.41

Dry period
(2012/3, 4, 5, 10, 11) 263.6 293.0 361.3 0.877 0.902 2.620 2.904 0.769 0.813 −11.14 −37.07

Winter period
(2012/1, 2, 12) 68.0 72.7 88.1 0.932 0.945 1.253 1.247 0.868 0.893 −6.99 −29.54

Table 5: List of the ten days where 𝑅
𝑍(P) and 𝑅𝐾DP(P) results overestimated the rain gauge rainfall data the most.

Date
Daily rainfall (mm)

Difference
(mm) Date

Daily rainfall (mm)
Difference
(mm)Rain gauge rainfall

data (𝑅gauge)
Rain radar rainfall

data (𝑅
𝑍(P))

Rain gauge rainfall
data (𝑅gauge)

Rain radar rainfall
data (𝑅

𝐾DP(P))
2012-09-12 0.0 29.2 −29.2 2012-04-25 15.8 32.4 −16.6
2012-05-28 5.2 19.1 −13.9 2012-03-30 11.4 27.9 −16.5
2012-05-08 5.4 18.8 −13.4 2012-11-04 6.0 21.7 −15.7
2012-12-14 15.4 28.3 −12.9 2012-12-14 15.4 29.8 −14.4
2012-11-04 6.0 18.3 −12.3 2012-03-22 5.2 18.3 −13.1
2012-08-16 25.2 33.2 −8.0 2012-07-06 30.6 43.4 −12.8
2012-04-25 15.8 22.8 −7.0 2012-11-11 17.0 26.0 −9.0
2012-11-11 17.0 23.6 −6.6 2012-08-20 1.6 9.7 −8.1
2012-07-15 19.2 25.7 −6.5 2012-08-16 25.2 33.1 −7.9
2012-03-22 5.2 11.5 −6.3 2012-07-15 19.2 27.0 −7.8

Table 6: List of the ten days where 𝑅
𝑍(P) and 𝑅𝐾DP(P) results underestimated the rain gauge rainfall data the most.

Date
Daily rainfall (mm)

Difference
(mm) Date

Daily rainfall (mm)
Difference
(mm)Rain gauge rainfall

data (𝑅gauge)
Rain radar rainfall

data (𝑅
𝑍(P))

Rain gauge rainfall
data (𝑅gauge)

Rain radar rainfall
data (𝑅

𝐾DP(P))
2012-09-17 176.0 143.6 32.4 2012-08-30 69.0 51.9 17.1
2012-08-28 63.0 46.2 16.8 2012-03-23 22.0 11.9 10.1
2012-08-30 69.0 53.1 15.9 2012-08-28 63.0 54.2 8.8
2012-03-23 22.0 11.1 10.9 2012-09-13 9.6 2.6 7.0
2012-05-14 20.6 9.8 10.8 2012-09-17 176.0 170.4 5.6
2012-09-13 9.6 1.1 8.5 2012-09-16 69.0 64.2 4.8
2012-09-16 69.0 61.1 7.9 2012-07-07 5.2 0.7 4.5
2012-04-21 40.2 34.4 5.8 2012-06-12 9.2 5.9 3.3
2012-08-23 34.2 28.6 5.6 2012-08-11 9.6 6.3 3.3
2012-07-07 5.2 0.3 4.9 2012-03-04 6.2 3.0 3.2

periods of calibration (2010), validation (2011), and simula-
tion (2012). The parameters were corrected through runoff
simulation for the period of correction using ground rainfall
data. Using these parameters, the runoff analysis was carried
out based on the SWAT model for the periods of calibration
and simulation. The results from the runoff analysis were
analyzed based on the general applicability evaluation criteria
of the model presented by Moriasi et al. [25] in Section 3.3.

Figure 5 compares the observed and simulated stream-
flows for the periods of correction and calibration. The sim-
ulated streamflows obtained using the observed streamflow
and 𝑅gauge during the period of correction are 20.7m3/sec
and 20.5m3/sec, respectively, and themeans of the simulation
streamflows using the observed streamflow and𝑅gauge during
the period of calibration are 22.7m3/sec and 22.4m3/sec,
respectively. As shown in Figure 5, the results of the runoff
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Figure 5: Calibration and validation of the SWAT model.
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Figure 6: The results of the daily streamflow simulation (2012).

charge using 𝑅gauge for the periods of correction and calibra-
tion describe the entire characteristics of the daily unit runoff
discharge relatively well. However, 2010/8/10 and 2010/8/15∼
16 during the period of calibration and 2011/8/9 during the
period of validation are underestimated because the run-off
discharge is relatively high.Moreover, as a result of evaluating
the applicability of the SWAT model during the periods of
correction and calibration, as presented in Table 7, the NSE
values are 0.97 and 0.78, respectively, the PBIAS (%) values
are 1.44 and −24.13, respectively, and the RSR values are

nearly 0.47. The results from the runoff analysis during the
periods of correction and calibration are a natural result of
the application of the optimized model parameters of the
correction period to the calibration period.

Figure 6 shows the results of daily streamflow hydro-
graphs which applied 𝑅

𝑍(P) and 𝑅𝐾DP(P) to the model that
completed its validation using the parameters calibrated
earlier.

The mean of the observation streamflow during the
period of simulation (2012) is 19.8m3/sec. The mean of the
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Table 7: Evaluation of the model applicability in the streamflow analysis.

Classification Type of
rainfall data NSE RSR PBIAS (%)

Calibration
(2010) 𝑅gauge 0.97 (very good) 0.47 (very good) 1.46 (very good)

Validation
(2011) 𝑅gauge 0.78 (very good) 0.47 (very good) −24.13 (satisfactory)

Simulation
(2012)

𝑅gauge 0.74 (good) 0.51 (good) −27.50 (unsatisfactory)
𝑅
𝑍(P) 0.69 (good) 0.55 (good) −42.74 (unsatisfactory)
𝑅
𝐾DP(P)

0.72 (good) 0.53 (good) −44.79 (unsatisfactory)

Simulation
(rainy or wet
season)

𝑅gauge 0.74 (good) 0.51 (good) −25.59 (unsatisfactory)
𝑅
𝑍(P) 0.73 (good) 0.52 (good) −30.23 (unsatisfactory)
𝑅
𝐾DP(P)

0.75 (good) 0.50 (very Good) −29.80 (unsatisfactory)

Simulation (dry
season)

𝑅gauge −8.91 (unsatisfactory) 3.15 (very good) −35.00 (unsatisfactory)
𝑅
𝑍(P) −24.10 (unsatisfactory) 5.01 (good) −80.51 (unsatisfactory)
𝑅
𝐾DP(P)

−23.40 (unsatisfactory) 4.94 (very good) −92.49 (unsatisfactory)

runoff discharge using the ground observation data is about
25.2m3/sec and the mean values of the runoff discharge
using𝑅

𝑍(P) and𝑅𝐾DP(P) are about 27.7m
3/sec and 28.1m3/sec,

respectively. In other words, the average streamflows were
higher when 𝑅

𝑍(P) and 𝑅𝐾DP(P) were used compared to when
𝑅gauge was used during the period of simulation (2012).
The NSE, RSR, and PBIAS (%) values, which are evaluation
indexes for the applicability of the SWAT model during the
period of simulation, showed more significant simulation
results when 𝑅gauge was used compared to when 𝑅

𝑍(P) and
𝑅
𝐾DP(P) were used (Table 7).
Similar to the rainfall comparison (Section 4.1), the runoff

discharge analysis was carried out by classifying the season to
either the rainy or wet season or the dry season depending
on the characteristics of the rainfall and seasonal period.
As a result, the NSE, RSR, and PBIAS (%) values, which
are evaluation indexes for the applicability of the SWAT
model, during the rainy or wet season are 0.74, 0.51, and
−25.59, respectively, when 𝑅gauge was used and 0.73, 0.52, and
−30.23 and 0.75, 0.50, and −29.80 when 𝑅

𝑍(P) and 𝑅𝐾DP(P)
were used. In other words, it is significant to use 𝑅

𝑍(P)
and 𝑅

𝐾DP(P) in the rainy or wet season (Jun. to Sept.) when
convection precipitation, which is at an intermediate level or
higher (relatively high) in terms of rainfall intensity including
heavy rains and typhoons, occurs frequently. Such a result is
attributable to the fact that the QPE algorithms (Section 2.2)
used in this study are optimized for rainfall observation in
the form of convection precipitation with a high rainfall
intensity for the purpose of forecasting and warning floods.
If QPE algorithms are applied to observation strategies and
algorithms for the purpose of stratiform rainfall or winter
season observation, opposite results from those obtained in
this study are expected.

Therefore, to increase the applicability of rain radar-
derived rainfall data in analyzing more than one year of
long-term runoff (both daily and monthly time steps), it
is necessary to take the development and application of

algorithms into account to improve QPE algorithms as well
as the accuracy of radar data.

5. Conclusions

In this study, we evaluated the applicability of long-term
runoff simulation on a daily basis using rain radar-derived
rainfall data with rain gauge data (𝑅gauge).

The SWATmodel, which is a semidistribution hydrologic
model, was applied to the Gamcheon stream basin of the
Nakdong River from 2010 to 2012. In addition, radar-derived
point rainfall data (𝑅

𝑍(P) and 𝑅𝐾DP(P)) and rain gauge data
(𝑅gauge) were compared prior to runoff simulation.

As a result of comparing the annual average accumulated
amount of precipitation during the period of simulation
(2012), 𝑅

𝑍(P) and 𝑅𝐾DP(P) underestimated 𝑅gauge by about
0.7% and overestimated 𝑅gauge by 13.2%, respectively. The
annual data were classified into the rainy or wet season
and dry season depending on the characteristics of rainfall
and seasonal period taking into account the typical rainfall
distribution in Korea in Jun. to Sept. when heavy rain and
typhoons occur in order to compare the average accumulated
rainfall in the basin. As a result, 𝑅

𝑍(P) and 𝑅𝐾DP(P) had
relatively lower errors compared to 𝑅gauge in the summer
(rainy orwet season), but therewere large errors because such
values are overestimated in the dry season.

Based on the correlation coefficient (𝑅), runoff simu-
lations using 𝑅gauge, 𝑅𝑍(P), and 𝑅𝐾DP(P) were carried out.
As a result, the simulations described the characteristics of
the changes of runoff on a daily basis well. The NSE, RSR,
and PBIAS (%) values, which are evaluation indexes for the
applicability of the SWATmodel, were evaluated in this study.
As a result, the NSE and RSR values were appropriate, but
PBIAS (%) was negative in most cases. This suggests that the
PBIAS (%) is overestimated. In particular, as in the rainfall
analysis, the runoff discharge analysis was classified into
the rainy or wet season and dry season. As a result of the
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comparison of both seasons, the NSE, RSR, and PBIAS (%)
values in the rainy or wet season showed similar or more
significant values when 𝑅gauge was used compared to when
𝑅
𝑍(P) and 𝑅𝐾DP(P) were used. But, in the dry season, the

analysis did not match the ground observation rainfall data
well (𝑅gauge). Based on the results obtained to date, the QPE
algorithms used in this study are highly applicable in runoff
simulation from Jun. to Sept. (summer; rainy season) and less
applicable in other periods (dry season; winter).

The results from this study suggest that it is necessary
to select radar observation strategies and algorithms appro-
priately depending on the intended purpose of radar rainfall
data.Therefore, further studies are needed to improve the bias
correction and rainfall algorithms (in real time) to increase
the usability of radar data in analyzing long-term runoff for
more than one year (both daily andmonthly time steps). Still,
there is a limit to the accuracy of Quantitative Precipitation
Estimation. But if the accuracy of Quantitative Precipitation
Estimation can be improved sufficiently, the hydrological
application scope of rain radar rainfall will be expanded
sufficiently and more exact hydrologic analysis will become
possible.
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