11 research outputs found

    The seasonality of tuberculosis, sunlight, vitamin D, and household crowding.

    Get PDF
    BACKGROUND: Unlike other respiratory infections, tuberculosis diagnoses increase in summer. We performed an ecological analysis of this paradoxical seasonality in a Peruvian shantytown over 4 years. METHODS: Tuberculosis symptom-onset and diagnosis dates were recorded for 852 patients. Their tuberculosis-exposed cohabitants were tested for tuberculosis infection with the tuberculin skin test (n = 1389) and QuantiFERON assay (n = 576) and vitamin D concentrations (n = 195) quantified from randomly selected cohabitants. Crowding was calculated for all tuberculosis-affected households and daily sunlight records obtained. RESULTS: Fifty-seven percent of vitamin D measurements revealed deficiency (<50 nmol/L). Risk of deficiency was increased 2.0-fold by female sex (P < .001) and 1.4-fold by winter (P < .05). During the weeks following peak crowding and trough sunlight, there was a midwinter peak in vitamin D deficiency (P < .02). Peak vitamin D deficiency was followed 6 weeks later by a late-winter peak in tuberculin skin test positivity and 12 weeks after that by an early-summer peak in QuantiFERON positivity (both P < .04). Twelve weeks after peak QuantiFERON positivity, there was a midsummer peak in tuberculosis symptom onset (P < .05) followed after 3 weeks by a late-summer peak in tuberculosis diagnoses (P < .001). CONCLUSIONS: The intervals from midwinter peak crowding and trough sunlight to sequential peaks in vitamin D deficiency, tuberculosis infection, symptom onset, and diagnosis may explain the enigmatic late-summer peak in tuberculosis

    The seasonality of tuberculosis, sunlight, vitamin D, and household crowding

    No full text
    Background. Unlike other respiratory infections, tuberculosis diagnoses increase in summer. We performed an ecological analysis of this paradoxical seasonality in a Peruvian shantytown over 4 years. Methods. Tuberculosis symptom-onset and diagnosis dates were recorded for 852 patients. Their tuberculosis-exposed cohabitants were tested for tuberculosis infection with the tuberculin skin test (n = 1389) and QuantiFERON assay (n = 576) and vitamin D concentrations (n = 195) quantified from randomly selected cohabitants. Crowding was calculated for all tuberculosis-affected households and daily sunlight records obtained. Results. Fifty-seven percent of vitamin D measurements revealed deficiency (<50 nmol/L). Risk of deficiency was increased 2.0-fold by female sex (P < .001) and 1.4-fold by winter (P < .05). During the weeks following peak crowding and trough sunlight, there was a midwinter peak in vitamin D deficiency (P < .02). Peak vitamin D deficiency was followed 6 weeks later by a late-winter peak in tuberculin skin test positivity and 12 weeks after that by an early-summer peak in QuantiFERON positivity (both P < .04). Twelve weeks after peak QuantiFERON positivity, there was a midsummer peak in tuberculosis symptom onset (P < .05) followed after 3 weeks by a late-summer peak in tuberculosis diagnoses (P < .001). Conclusions. The intervals from midwinter peak crowding and trough sunlight to sequential peaks in vitamin D deficiency, tuberculosis infection, symptom onset, and diagnosis may explain the enigmatic late-summer peak in tuberculosis. crowding, household, seasonality, sunlight, tuberculosis, vitamin D Topic: vitamin d deficiencycrowdingsunlighttuberculosisinfectionsvitamin dseasonal variation Issue Section: Major Articles and Brief Report

    Chimeric Virus-like Particle-Based COVID-19 Vaccine Confers Strong Protection against SARS-CoV-2 Viremia in K18-hACE2 Mice

    No full text
    Virus-like particles (VLPs) are highly immunogenic and versatile subunit vaccines composed of multimeric viral proteins that mimic the whole virus but lack genetic material. Due to the lack of infectivity, VLPs are being developed as safe and effective vaccines against various infectious diseases. In this study, we generated a chimeric VLP-based COVID-19 vaccine stably produced by HEK293T cells. The chimeric VLPs contain the influenza virus A matrix (M1) proteins and the SARS-CoV-2 Wuhan strain spike (S) proteins with a deletion of the polybasic furin cleavage motif and a replacement of the transmembrane and cytoplasmic tail with that of the influenza virus hemagglutinin (HA). These resulting chimeric S-M1 VLPs, displaying S and M1, were observed to be enveloped particles that are heterogeneous in shape and size. The intramuscular vaccination of BALB/c mice in a prime-boost regimen elicited high titers of S-specific IgG and neutralizing antibodies. After immunization and a challenge with SARS-CoV-2 in K18-hACE2 mice, the S-M1 VLP vaccination resulted in a drastic reduction in viremia, as well as a decreased viral load in the lungs and improved survival rates compared to the control mice. Balanced Th1 and Th2 responses of activated S-specific T-cells were observed. Moderate degrees of inflammation and viral RNA in the lungs and brains were observed in the vaccinated group; however, brain lesion scores were less than in the PBS control. Overall, we demonstrate the immunogenicity of a chimeric VLP-based COVID-19 vaccine which confers strong protection against SARS-CoV-2 viremia in mice
    corecore