4 research outputs found

    Solution-Processable Ambipolar Diketopyrrolopyrrole–Selenophene Polymer with Unprecedentedly High Hole and Electron Mobilities

    No full text
    There is a fast-growing demand for polymer-based ambipolar thin-film transistors (TFTs), in which both <i>n</i>-type and <i>p</i>-type transistor operations are realized in a single layer, while maintaining simplicity in processing. Research progress toward this end is essentially fueled by molecular engineering of the conjugated backbones of the polymers and the development of process architectures for device fabrication, which has recently led to hole and electron mobilities of more than 1.0 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. However, ambipolar polymers with even higher performance are still required. By taking into account both the conjugated backbone and side chains of the polymer component, we have developed a dithienyl-diketopyrrolopyrrole (TDPP) and selenophene containing polymer with hybrid siloxane-solubilizing groups (<b>PTDPPSe-Si</b>). A synergistic combination of rational polymer backbone design, side-chain dynamics, and solution processing affords an enormous boost in ambipolar TFT performance, resulting in unprecedentedly high hole and electron mobilities of 3.97 and 2.20 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, respectively

    β‑Alkyl substituted Dithieno[2,3‑<i>d</i>;2′,3′<i>-d</i>′]benzo[1,2‑<i>b</i>;4,5‑<i>b</i>′]dithiophene Semiconducting Materials and Their Application to Solution-Processed Organic Transistors

    No full text
    A novel highly π-extended heteroacene with four symmetrically fused thiophene-ring units and solubilizing substituents at the terminal β-positions on the central ring, dithieno­[2,3-<i>d</i>;2′,3′<i>-d</i>′]­benzo­[1,2-<i>b</i>;4,5-<i>b</i>′]­dithiophene (DTBDT) was synthesized via intramolecular electrophilic coupling reaction. The α-positions availability in the DTBDT motif enables the preparation of solution-processable DTBDT-based polymers such as <b>PDTBDT</b>, <b>PDTBDT-BT</b>, <b>PDTBDT-DTBT</b>, and <b>PDTBDT-DTDPP</b>. Even with its highly extended acene-like π-framework, all polymers show fairly good environmental stability of their highest occupied molecular orbitals (HOMOs) from −5.21 to −5.59 eV. In the course of our study to assess a profile of semiconductor properties, field-effect transistor performance of the four DTBDT-containing copolymers via solution-process is characterized, and <b>PDTBDT-DTDPP</b> exhibits the best electrical performance with a hole mobility of 1.70 × 10<sup>–2</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. <b>PDTBDT-DTDPP</b> has a relatively smaller charge injection barrier for a hole from the gold electrodes and maintains good coplanarity of the polymer backbone, indicating the enhanced π–π stacking characteristic and charge carrier transport. The experimental results demonstrate that our molecular design strategy for air-stable, high-performance organic semiconductors is highly promising

    Ambipolar Semiconducting Polymers with <i>Ï€-</i>Spacer Linked Bis-Benzothiadiazole Blocks as Strong Accepting Units

    No full text
    Recognizing the importance of molecular coplanarity and with the aim of developing new, ideal strong acceptor-building units in semiconducting polymers for high-performance organic electronics, herein we present a simplified single-step synthesis of novel vinylene- and acetylene-linked bis-benzothiadiazole (<b>VBBT</b> and <b>ABBT</b>) monomers with enlarged planarity relative to a conventionally used acceptor, benzothiadiazole (BT). Along these lines, four polymers (<b>PDPP-VBBT</b>, <b>PDPP-ABBT</b>, <b>PIID-VBBT</b>, and <b>PIID-ABBT</b>) incorporating either <b>VBBT</b> or <b>ABBT</b> moieties are synthesized by copolymerizing with centro-symmetric ketopyrrole cores, such as diketopyrrolopyrrole (DPP) and isoindigo (IID), and their electronic, physical, and transistor properties are studied. These polymers show relatively balanced ambipolar transport, and <b>PDPP-VBBT</b> yields hole and electron mobilities as high as 0.32 and 0.13 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, respectively. Interestingly, the acetylenic linkages lead to enhanced electron transportation in ketopyrrole-based polymers, showing a decreased threshold voltage and inverting voltage in the transistor and inverter devices, respectively. The IID-based BBT polymers exhibit the inversion of the dominant polarity depending on the type of unsaturated carbon bridge. Owing to their strong electron-accepting ability and their highly π-extended and planar structures, <b>VBBT</b> and <b>ABBT</b> monomers should be extended to the rational design of high-performance polymers in the field of organic electronics

    Synthesis of PCDTBT-Based Fluorinated Polymers for High Open-Circuit Voltage in Organic Photovoltaics: Towards an Understanding of Relationships between Polymer Energy Levels Engineering and Ideal Morphology Control

    No full text
    The introduction of fluorine (F) atoms onto conjugated polymer backbone has verified to be an effective way to enhance the overall performance of polymer-based bulk-heterojunction (BHJ) solar cells, but the underlying working principles are not yet fully uncovered. As our attempt to further understand the impact of F, herein we have reported two novel fluorinated analogues of PCDTBT, namely, <b>PCDTFBT</b> (1F) and <b>PCDT2FBT</b> (2F), through inclusion of either one or two F atoms into the benzothiadiazole (BT) unit of the polymer backbone and the characterization of their physical properties, especially their performance in solar cells. Together with a profound effect of fluorination on the optical property, nature of charge transport, and molecular organization, F atoms are effective in lowering both the HOMO and LUMO levels of the polymers without a large change in the energy bandgaps. <b>PCDTFBT</b>-based BHJ solar cell shows a power conversion efficiency (PCE) of 3.96 % with high open-circuit voltage (<i>V</i><sub>OC</sub>) of 0.95 V, mainly due to the deep HOMO level (−5.54 eV). To the best of our knowledge, the resulting <i>V</i><sub>OC</sub> is comparable to the record <i>V</i><sub>OC</sub> values in single junction devices. Furthermore, to our delight, the best <b>PCDTFBT</b>-based device, prepared using 2 % v/v diphenyl ether (DPE) additive, reaches the PCE of 4.29 %. On the other hand, doubly-fluorinated polymer <b>PCDT2FBT</b> shows the only moderate PCE of 2.07 % with a decrease in <i>V</i><sub>OC</sub> (0.88 V), in spite of the further lowering of the HOMO level (−5.67 eV) with raising the number of F atoms. Thus, our results highlight that an improvement in efficiency by tuning the energy levels of the polymers by means of molecular design can be expected only if their truly optimized morphologies with fullerene in BHJ systems are materialized
    corecore