548 research outputs found
Measuring working memory load effects on electrophysiological markers of attention orienting during a simulated drive
Intersection accidents result in a significant proportion of road fatalities, and attention allocation likely plays a role. Attention allocation may depend on (limited) working memory (WM) capacity. Driving is often combined with tasks increasing WM load, consequently impairing attention orienting. This study (n = 22) investigated WM load effects on event-related potentials (ERPs) related to attention orienting. A simulated driving environment allowed continuous lane-keeping measurement. Participants were asked to orient attention covertly towards the side indicated by an arrow, and to respond only to moving cars appearing on the attended side by pressing a button. WM load was manipulated using a concurrent memory task. ERPs showed typical attentional modulation (cue: contralateral negativity, LDAP; car: N1, P1, SN and P3) under low and high load conditions. With increased WM load, lane-keeping performance improved, while dual task performance degraded (memory task: increased error rate; orienting task: increased false alarms, smaller P3).
Practitioner Summary: Intersection driver-support systems aim to improve traffic safety and flow. However, in-vehicle systems induce WM load, increasing the tendency to yield. Traffic flow reduces if drivers stop at inappropriate times, reducing the effectiveness of systems. Consequently, driver-support systems could include WM load measurement during driving in the development phase
Slowly evolving random graphs II: Adaptive geometry in finite-connectivity Hopfield models
We present an analytically solvable random graph model in which the
connections between the nodes can evolve in time, adiabatically slowly compared
to the dynamics of the nodes. We apply the formalism to finite connectivity
attractor neural network (Hopfield) models and we show that due to the
minimisation of the frustration effects the retrieval region of the phase
diagram can be significantly enlarged. Moreover, the fraction of misaligned
spins is reduced by this effect, and is smaller than in the infinite
connectivity regime. The main cause of this difference is found to be the
non-zero fraction of sites with vanishing local field when the connectivity is
finite.Comment: 17 pages, 8 figure
Orbital order in the low-dimensional quantum spin system TiOCl probed by ESR
We present electron spin resonance data of Ti (3) ions in single
crystals of the novel layered quantum spin magnet TiOCl. The analysis of the g
tensor yields direct evidence that the d_{xy} orbital from the t_{2g} set is
predominantly occupied and owing to the occurrence of orbital order a linear
spin chain forms along the crystallographic b axis. This result corroborates
recent theoretical LDA+U calculations of the band structure. The temperature
dependence of the parameters of the resonance signal suggests a strong coupling
between spin and lattice degrees of freedom and gives evidence for a transition
to a nonmagnetic ground state at 67 K.Comment: revised version, accepted for publication in Phys. Rev. B, Rapid Com
Optical study of orbital excitations in transition-metal oxides
The orbital excitations of a series of transition-metal compounds are studied
by means of optical spectroscopy. Our aim was to identify signatures of
collective orbital excitations by comparison with experimental and theoretical
results for predominantly local crystal-field excitations. To this end, we have
studied TiOCl, RTiO3 (R=La, Sm, Y), LaMnO3, Y2BaNiO5, CaCu2O3, and K4Cu4OCl10,
ranging from early to late transition-metal ions, from t_2g to e_g systems, and
including systems in which the exchange coupling is predominantly
three-dimensional, one-dimensional or zero-dimensional. With the exception of
LaMnO3, we find orbital excitations in all compounds. We discuss the
competition between orbital fluctuations (for dominant exchange coupling) and
crystal-field splitting (for dominant coupling to the lattice). Comparison of
our experimental results with configuration-interaction cluster calculations in
general yield good agreement, demonstrating that the coupling to the lattice is
important for a quantitative description of the orbital excitations in these
compounds. However, detailed theoretical predictions for the contribution of
collective orbital modes to the optical conductivity (e.g., the line shape or
the polarization dependence) are required to decide on a possible contribution
of orbital fluctuations at low energies, in particular in case of the orbital
excitations at about 0.25 eV in RTiO3. Further calculations are called for
which take into account the exchange interactions between the orbitals and the
coupling to the lattice on an equal footing.Comment: published version, discussion of TiOCl extended to low T, improved
calculation of orbital excitation energies in TiOCl, figure 16 improved,
references updated, 33 pages, 20 figure
Ephemeris Updates for Seven Selected HATNet Survey Transiting Exoplanets
We refined the ephemeris of seven transiting exoplanets HAT-P-6b, HAT-P-12b,
HAT-P-18b, HAT-P-22b, HAT-P-32b, HAT-P-33b, and HAT-P-52b. We observed 11
transits from eight observatories in different filters for HAT-P-6b and
HAT-P-32b. Also, the Exoplanet Transit Database (ETD) observations for each of
the seven exoplanets were analyzed, and the light curves of five systems were
studied using Transiting light Exoplanet Survey Satellite (TESS) data. We used
Exofast-v1 to simulate these ground- and space-based light curves and estimate
mid-transit times. We obtained a total of 11, 175 and 67 mid-transit times for
these seven exoplanets from our observations, ETD and TESS data, respectively,
along with 155 mid-transit times from the literature. Then, we generated
transit timing variation (TTV) diagrams for each using derived mid-transit
times as well as those found in the literature. The systems' linear ephemeris
was then refined and improved using the Markov Chain Monte Carlo (MCMC) method.
All of the studied exoplanets, with the exception of the HAT-P-12b system,
displayed an increasing trend in the orbital period in the TTV diagrams.Comment: 11 Pages, submitted to the Astrophysics journa
Partially Annealed Disorder and Collapse of Like-Charged Macroions
Charged systems with partially annealed charge disorder are investigated
using field-theoretic and replica methods. Charge disorder is assumed to be
confined to macroion surfaces surrounded by a cloud of mobile neutralizing
counterions in an aqueous solvent. A general formalism is developed by assuming
that the disorder is partially annealed (with purely annealed and purely
quenched disorder included as special cases), i.e., we assume in general that
the disorder undergoes a slow dynamics relative to fast-relaxing counterions
making it possible thus to study the stationary-state properties of the system
using methods similar to those available in equilibrium statistical mechanics.
By focusing on the specific case of two planar surfaces of equal mean surface
charge and disorder variance, it is shown that partial annealing of the
quenched disorder leads to renormalization of the mean surface charge density
and thus a reduction of the inter-plate repulsion on the mean-field or
weak-coupling level. In the strong-coupling limit, charge disorder induces a
long-range attraction resulting in a continuous disorder-driven collapse
transition for the two surfaces as the disorder variance exceeds a threshold
value. Disorder annealing further enhances the attraction and, in the limit of
low screening, leads to a global attractive instability in the system.Comment: 21 pages, 2 figure
The non-coding RNA landscape of human hematopoiesis and leukemia
© The Author(s) 2017. Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy
The Water Balance Representation in UrbanâPLUMBER Land Surface Models
Urban Land Surface Models (ULSMs) simulate energy and water exchanges between the urban surface and atmosphere. However, earlier systematic ULSM comparison projects assessed the energy balance but ignored the water balance, which is coupled to the energy balance. Here, we analyze the water balance representation in 19 ULSMs participating in the Urban-PLUMBER project using results for 20 sites spread across a range of climates and urban form characteristics. As observations for most water fluxes are unavailable, we examine the water balance closure, flux timing, and magnitude with a score derived from seven indicators expecting better scoring models to capture the latent heat flux more accurately. We find that the water budget is only closed in 57% of the model-site combinations assuming closure when annual total incoming fluxes (precipitation and irrigation) fluxes are within 3% of the outgoing (all other) fluxes. Results show the timing is better captured than magnitude. No ULSM has passed all water balance indicators for any site. Models passing more indicators do not capture the latent heat flux more accurately refuting our hypothesis. While output reporting inconsistencies may have negatively affected model performance, our results indicate models could be improved by explicitly verifying water balance closure and revising runoff parameterizations. By expanding ULSM evaluation to the water balance and related to latent heat flux performance, we demonstrate the benefits of evaluating processes with direct feedback mechanisms to the processes of interest
- âŠ