6 research outputs found

    Comparison of Hyperspectral Imagery and Physiological Characteristics of Bentazone-Tolerant and -Susceptible Soybean Cultivars

    No full text
    Bentazone is a broadleaf post-emergence herbicide widely used for crop production that inhibits photosynthetic activity, resulting in phytotoxicity and injury in plants. Evaluating and identifying herbicide-tolerant genotypes is a critical step in plant breeding programs. In this study, we determined the reaction of 138 Korean soybean cultivars to bentazone using visual evaluation, and selected cultivars were further evaluated to determine the effects of bentazone on physiological parameters. For physiological parameters, we measured the normalized difference vegetation index (NDVI) from hyperspectral reflectance images. From 2 to 4 DAT, the NDVI for two sensitive cultivars was between 0.60 and 0.69, while the NDVI for tolerant cultivars was between 0.70 and 0.86. Photosynthesis rate (A), transpiration (E), stomatal conductance (gsw), and total conductance of CO2 (gtc) were measured using chlorophyll fluorescence. Visual score evaluation showed that moderate bentazone-tolerant cultivars were predominant among the Korean cultivars. For physiological measurements, differences in NDVI were detected between bentazone-tolerant and -sensitive cultivars 2 days after treatment (DAT). However, the A, E, gsw, and gtc levels dramatically decreased 1 DAT in the sensitive cultivars. This study provides insights into the tolerance and sensitivity of soybeans to bentazone

    Single-Agent Divarasib (GDC-6036) in Solid Tumors with a KRAS G12C Mutation.

    Full text link
    peer reviewed[en] BACKGROUND: Divarasib (GDC-6036) is a covalent KRAS G12C inhibitor that was designed to have high potency and selectivity. METHODS: In a phase 1 study, we evaluated divarasib administered orally once daily (at doses ranging from 50 to 400 mg) in patients who had advanced or metastatic solid tumors that harbor a KRAS G12C mutation. The primary objective was an assessment of safety; pharmacokinetics, investigator-evaluated antitumor activity, and biomarkers of response and resistance were also assessed. RESULTS: A total of 137 patients (60 with non-small-cell lung cancer [NSCLC], 55 with colorectal cancer, and 22 with other solid tumors) received divarasib. No dose-limiting toxic effects or treatment-related deaths were reported. Treatment-related adverse events occurred in 127 patients (93%); grade 3 events occurred in 15 patients (11%) and a grade 4 event in 1 patient (1%). Treatment-related adverse events resulted in a dose reduction in 19 patients (14%) and discontinuation of treatment in 4 patients (3%). Among patients with NSCLC, a confirmed response was observed in 53.4% of patients (95% confidence interval [CI], 39.9 to 66.7), and the median progression-free survival was 13.1 months (95% CI, 8.8 to could not be estimated). Among patients with colorectal cancer, a confirmed response was observed in 29.1% of patients (95% CI, 17.6 to 42.9), and the median progression-free survival was 5.6 months (95% CI, 4.1 to 8.2). Responses were also observed in patients with other solid tumors. Serial assessment of circulating tumor DNA showed declines in KRAS G12C variant allele frequency associated with response and identified genomic alterations that may confer resistance to divarasib. CONCLUSIONS: Treatment with divarasib resulted in durable clinical responses across KRAS G12C-positive tumors, with mostly low-grade adverse events. (Funded by Genentech; ClinicalTrials.gov number, NCT04449874.)

    Single-Agent Divarasib (GDC-6036) in Solid Tumors with a KRAS G12C Mutation

    No full text
    BACKGROUND: Divarasib (GDC-6036) is a covalent KRAS G12C inhibitor that was designed to have high potency and selectivity. METHODS: In a phase 1 study, we evaluated divarasib administered orally once daily (at doses ranging from 50 to 400 mg) in patients who had advanced or metastatic solid tumors that harbor a KRAS G12C mutation. The primary objective was an assessment of safety; pharmacokinetics, investigator-evaluated antitumor activity, and biomarkers of response and resistance were also assessed. RESULTS: A total of 137 patients (60 with non-small-cell lung cancer [NSCLC], 55 with colorectal cancer, and 22 with other solid tumors) received divarasib. No dose-limiting toxic effects or treatment-related deaths were reported. Treatment-related adverse events occurred in 127 patients (93%); grade 3 events occurred in 15 patients (11%) and a grade 4 event in 1 patient (1%). Treatment-related adverse events resulted in a dose reduction in 19 patients (14%) and discontinuation of treatment in 4 patients (3%). Among patients with NSCLC, a confirmed response was observed in 53.4% of patients (95% confidence interval [CI], 39.9 to 66.7), and the median progression-free survival was 13.1 months (95% CI, 8.8 to could not be estimated). Among patients with colorectal cancer, a confirmed response was observed in 29.1% of patients (95% CI, 17.6 to 42.9), and the median progression-free survival was 5.6 months (95% CI, 4.1 to 8.2). Responses were also observed in patients with other solid tumors. Serial assessment of circulating tumor DNA showed declines in KRAS G12C variant allele frequency associated with response and identified genomic alterations that may confer resistance to divarasib. CONCLUSIONS: Treatment with divarasib resulted in durable clinical responses across KRAS G12C-positive tumors, with mostly low-grade adverse events. (Funded by Genentech; ClinicalTrials.gov number, NCT04449874.)
    corecore