1,455 research outputs found

    Effects of Dexmedetomidine on Serum Interleukin-6, Hemodynamic Stability, and Postoperative Pain Relief in Elderly Patients under Spinal Anesthesia

    Get PDF
    The beneficial effects of dexmedetomidine (DEX) have not been extensively investigated in elderly patients receiving spinal anesthesia. This study evaluated the effects of intravenous DEX infusion on stress and hemodynamic response, as well as on postoperative analgesia in elderly patients undergoing total knee arthroplasty (TKA). We randomly allocated 45 adult patients to 3 patient groups (n=15 each): uni-saline group patients underwent unilateral TKA with saline administration, uni-DEX group patients underwent unilateral TKA with DEX administration, and bilateral-DEX group patients underwent bilateral TKA with DEX administration. Serum interleukin-6 (IL-6) levels were significantly lower in the bilateral-DEX group than in the uni-saline group 6 and 24h postoperatively, and were negatively correlated with total DEX dosage 24h postoperatively. Bradycardia occurred more frequently in the uni-DEX and bilateral-DEX groups than in the uni-saline group. The total dose of required supplementary analgesics was significantly higher in the uni-saline group than in the uni-DEX and bilateral-DEX groups 6h postoperatively. The results indicate that perioperative intravenous DEX administration decreases postoperative serum IL-6 levels in patients undergoing bilateral TKA, and has a postoperative analgesic effect in patients undergoing unilateral or bilateral TKA

    Effects on Growth and Osteogenic Differentiation of Mesenchymal Stem Cells by the Zinc-Added Sol-Gel Bioactive Glass Granules

    Get PDF
    Responses of mesenchymal stem cells (MSCs) cultured with zinc-added (2 and 5%) bioactive glass granules were evaluated in terms of cell growth and osteogenic differentiation. MSCs were cultured with different quantities (3, 10 and 30) of glass granules for up to 21 days in the osteogenic medium. Cell growth was stimulated by a small quantity of glasses, particularly those that contained zinc. Osteogenic differentiation, as assessed by alkaline phosphatase activity (ALP) activity, was significantly enhanced by the glasses, particularly with large quantities of glass and for prolonged culturing. Expression of bone-sialo protein (BSP) was significantly up-regulated around the bioactive glass granules. Moreover, the zinc addition significantly altered the ALP and BSP depending on the culture time and glass quantity. Cellular mineralization was improved in all glass samples, and particularly in the 2% zinc-glass. Taken together, the zinc addition to bioactive glass induced the MSCs growth and their osteogenic differentiation, at least to the level of zinc-free glass, and with even higher level observed depending on the quantity and culture time. These findings indicate that the zinc addition to bioactive glass may be useful in development of biomaterials for the stimulation of adult stem cell in bone tissue engineering

    Calcium Uptake and Release through Sarcoplasmic Reticulum in the Inferior Oblique Muscles of Patients with Inferior Oblique Overaction

    Get PDF
    We characterized and compared the characteristics of Ca2+ movements through the sarcoplasmic reticulum of inferior oblique muscles in the various conditions including primary inferior oblique overaction (IOOA), secondary IOOA, and controls, so as to further understand the pathogenesis of primary IOOA. Of 15 specimens obtained through inferior oblique myectomy, six were from primary IOOA, 6 from secondary IOOA, and the remaining 3 were controls from enucleated eyes. Ryanodine binding assays were performed, and Ca2+ uptake rates, calsequestrins and SERCA levels were determined. Ryanodine bindings and sarcoplasmic reticulum Ca2+ uptake rates were significantly decreased in primary IOOA (p<0.05). Western blot analysis conducted to quantify calsequestrins and SERCA, found no significant difference between primary IOOA, secondary IOOA, and the controls. Increased intracellular Ca2+ concentration due to reduced sarcoplasmic reticulum Ca2+ uptake may play a role in primary IOOA

    Infantile Vitreous Hemorrhage as the Initial Presentation of X-linked Juvenile Retinoschisis

    Get PDF
    The authors report two cases of X-linked juvenile retinoschisis (XLRS) manifested as bilateral vitreous hemorrhage as early as in an 1-month-old infant and in a 3-month-old infant. The one-month-old male infant showed massive bilateral vitreous hemorrhage. During vitrectomy, thin membrane representing an inner part of schisis cavity was excised and intraschisis hemorrhage was evacuated. As intraschisis cavities were cleared, the stump of inner layer appeared as the demarcation line between the outer layer of the schisis retina and non-schisis retina. The other three-month-old male infant presenting with esodeviation also showed bilateral vitreous hemorrhage. Typical bilateral retinoschisis involving maculae could be seen through vitreous hemorrhage in both eyes on fundus examination. Spontaneous absorption of hemorrhage was observed on regular follow-up. XLRS could be manifested as massive hemorrhage inside or outside of the schisis cavity early in infancy

    Two aspects of decadal ENSO variability modulating the long-term global carbon cycle

    Get PDF
    The El Niño–Southern Oscillation (ENSO) drives variations in terrestrial carbon fluxes by affecting the terrestrial ecosystem via atmospheric teleconnections and thus plays an important role in interannual variability of the global carbon cycle. However, we lack such knowledge on decadal time scales, that is, how the carbon cycle can be affected by decadal variations of ENSO characteristics. Here we examine how, and by how much, decadal ENSO variability affects decadal variability of the global carbon cycle by analyzing a 1,801‐year preindustrial control simulation. We identify two different aspects, together explaining ~36% of the decadal variations in the global carbon cycle. First, climate variations induced by decadal ENSO‐like variability regulate terrestrial carbon flux and hence atmospheric CO2 on decadal time scales. Second, decadal changes in the asymmetrical response of the terrestrial ecosystem, resulting from decadal modulation of ENSO amplitude and asymmetry, rectify the background mean state, thereby generating decadal variability of land carbon fluxes

    Fibrin Glue Reduces the Duration of Lymphatic Drainage after Lumpectomy and Level II or III Axillary Lymph Node Dissection for Breast Cancer: A Prospective Randomized Trial

    Get PDF
    This randomized prospective study investigated the effect of fibrin glue use on drainage duration and overall drain output after lumpectomy and axillary dissection in breast cancer patients. A total of 100 patients undergoing breast lumpectomy and axillary dissection were randomized to a fibrin glue group (N=50; glue sprayed onto the axillary dissection site) or a control group (N=50). Outcome measures were drainage duration, overall drain output, and incidence of seroma. Overall, the fibrin glue and control groups were similar in terms of drainage duration, overall drain output, and incidence of seroma. However, subgroup analysis showed that fibrin glue use resulted in a shorter drainage duration (3.5 vs. 4.7 days; p=0.0006) and overall drain output (196 vs. 278 mL; p=0.0255) in patients undergoing level II or III axillary dissection. Fibrin glue use reduced drainage duration and overall drain output in breast cancer patients undergoing a lumpectomy and level II or III axillary dissection

    Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1

    Get PDF
    Cancer therapeutics: Extending a drug&apos;s reach A new drug that blocks heat shock proteins (HSPs), helper proteins that are co-opted by cancer cells to promote tumor growth, shows promise for cancer treatment. Several drugs have targeted HSPs, since cancer cells are known to hijack these helper proteins to shield themselves from destruction by the body. However, the drugs have had limited success. Hye-Kyung Park and Byoung Heon Kang at Ulsan National Institutes of Science and Technology in South Korea and coworkers noticed that the drugs were not absorbed into mitochondria, a key cellular compartment, and HSPs in this compartment were therefore not being blocked. They identified a new HSP inhibitor that can reach every cellular compartment and inhibit all HSPs. Testing in mice showed that this inhibitor effectively triggered death of tumor cells, and therefore shows promise for anti-cancer therapy. The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity
    corecore