3,400 research outputs found

    Experimental investigations of an all-fiber multireflector spectral filter for optical communications

    Get PDF
    All-fiber multireflector spectral filters which have potential application in optical communications have been investigated experimentally. These multireflector etalons were produced by aligning equal-length fiber sections with TiO2/SiO2 dielectric mirrors deposited on the end in a silicon v-groove. Fiber sections 1.33mm in length were produced by polishing, with the fibers held in a silicon wafer polishing jig. The fibers were aligned inside the polishing jig using a precision micro positioner. Then four polishing steps with increasingly finer grit were applied to produce high-quality polished end surfaces on each fiber section. Finally, a dielectric mirror was deposited on one end of each fiber section by magnetron sputtering. After characterizing the optical loss, length, and mirror reflectance for each of the fiber sections, sections which were well-matched in length were chosen for assembly of the four-mirror etalon, which had nominal reflectance values of 10%, 50%, 50%, and 10% for the dielectric mirrors. Measured transmittance spectra for a mutireflector spectral filter were compared with calculated spectra. Thermal tuning of the multireflector etalon was also investigated. A 0.34 nm wavelength shift was observed for a 23° C temperature change, in agreement with prediction. increasingly finer grit were applied to produce high-quality polished end surfaces on each fiber section. Finally, a dielectric mirror was deposited on one end of each fiber section by magnetron sputtering. After characterizing the optical loss, length, and mirror reflectance for each of the fiber sections, sections which were well-matched in length were chosen for assembly of the four-mirror etalon, which had nominal reflectance values of 10%, 50%, 50%, and 10% for the dielectric mirrors. Measured transmittance spectra for a mutireflector spectral filter were compared with calculated spectra. Thermal tuning of the multireflector etalon was also investigated. A 0.34 nm wavelength shift was observed for a 23° C temperature change, in agreement with prediction

    Effect of data normalization on fuzzy clustering of DNA microarray data

    Get PDF
    BACKGROUND: Microarray technology has made it possible to simultaneously measure the expression levels of large numbers of genes in a short time. Gene expression data is information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. Clustering is an important tool for finding groups of genes with similar expression patterns in microarray data analysis. However, hard clustering methods, which assign each gene exactly to one cluster, are poorly suited to the analysis of microarray datasets because in such datasets the clusters of genes frequently overlap. RESULTS: In this study we applied the fuzzy partitional clustering method known as Fuzzy C-Means (FCM) to overcome the limitations of hard clustering. To identify the effect of data normalization, we used three normalization methods, the two common scale and location transformations and Lowess normalization methods, to normalize three microarray datasets and three simulated datasets. First we determined the optimal parameters for FCM clustering. We found that the optimal fuzzification parameter in the FCM analysis of a microarray dataset depended on the normalization method applied to the dataset during preprocessing. We additionally evaluated the effect of normalization of noisy datasets on the results obtained when hard clustering or FCM clustering was applied to those datasets. The effects of normalization were evaluated using both simulated datasets and microarray datasets. A comparative analysis showed that the clustering results depended on the normalization method used and the noisiness of the data. In particular, the selection of the fuzzification parameter value for the FCM method was sensitive to the normalization method used for datasets with large variations across samples. CONCLUSION: Lowess normalization is more robust for clustering of genes from general microarray data than the two common scale and location adjustment methods when samples have varying expression patterns or are noisy. In particular, the FCM method slightly outperformed the hard clustering methods when the expression patterns of genes overlapped and was advantageous in finding co-regulated genes. Thus, the FCM approach offers a convenient method for finding subsets of genes that are strongly associated to a given cluster

    Murine leukemia provirus-mediated activation of the Notch1 gene leads to induction of HES-1 in a mouse T lymphoma cell line, DL-3

    Get PDF
    AbstractConstitutive activation of Notch signaling is known to be associated with tumorigenesis. In a mouse T lymphoma cell line, DL-3, we found that a murine leukemia provirus was inserted in the Notch1 locus, which led to marked expression of a virus-Notch1 fusion mRNA encoding an intracellular portion of the Notch1 protein. Furthermore, expression and nuclear localization of this constitutively active form of Notch1 protein were confirmed. Corresponding to this finding, the transcription of the hairy/enhancer of split (HES-1) gene, a known target of Notch1 signaling, was elevated in this cell line. A potential role for overexpressed HES-1 in the development of the lymphoma was discussed

    Refining Historical earthquake Data Through Modeling and Scale Model Tests

    Get PDF
    This study was performed for the reevaluation of historical earthquake records which occurred in Korea through tests and numerical analyses. For the scale model tests, static and cyclic lateral load tests on wooden frames that constitute a Korean ancient commoner’s house were conducted. Full-scale models of two types of frames were used for testing. Two 1:4 scale models were tested for rock and soil foundation conditions. Scaled real earthquake time histories were inputted for the tests. The peak ground acceleration (PGA) at the collapse of the house at the soil site was 0.25g, whereas PGA for moderate damage at the rock site was 0.6g. The intensity of major historical earthquake records related with house collapses was reevaluated based on the results of these scale mode1 tests. The magnitudes of historical earthquake records related with house collapses were estimated considering the magnitude, epicentral distance, soil condition and aging of the house. Eighteen artificial time histories for magnitudes 6-8, epicentral distances 5 km - 350 km and hard and soft soil condition were generated. The aging effects of the house was modeled as the lateral loading capacity of wooden frames represented by hysteretic stiffness decreased linearly with time

    Discovery of Maritrema obstipum (Digenea: Microphallidae) from Migratory Birds in Korea

    Get PDF
    Adults of Maritrema obstipum (Digenea: Microphallidae) were found in the intestines of 4 species of migratory birds, including the sanderling (Crocethia alba), Kentish plover (Charadrius alexandrines), Mongolian plover (Charadrius mongolus), and red-necked stint (Calidris ruficollis), collected from Yubu Island, Chungcheongnam-do, Korea. The worms of were 451×265 µm in size, and were easily identifiable as Maritrema species by the presence of the cirrus sac, and the ring-like distribution of the vitellaria. More specifically, the ejaculatory duct curved posteromedially, and the 2 parts of vitelline follicles were found to be distinct at the posterior end. The eggs were brown-colored, and 19.8×12.3 µm in size. All these findings implicated M. obstipum as the pertinent species of the worms. Beside these, adult worms of Gynaecotyla squatarolae, Parvatrema duboisi, and Acanthoparyphium sp. were also discovered. This is the first report establishing migratory birds as the natural definitive hosts for M. obstipum

    Multislice B₁ Mapping Method Using Magnetic Resonance Composite Spin Echo Sequences and Simultaneous Echo Refocusing

    Get PDF
    Radiofrequency (RF) transmit field (B1) mapping is a promising method in mitigating the B1 inhomogeneity in various magnetic resonance imaging (MRI) applications. Although several phase- or magnitude-based B1 mapping methods have been proposed, these methods often require complex modeling, long acquisition time, or specialized MRI sequences. A recently introduced simultaneous echo refocusing (SER) technique can be applied in the B1 mapping method to extend the three-dimensional (3D) spatial coverage only without long data acquisition. Therefore, in this study, a multislice B1 mapping method using composite spin echo sequences and SER techniques is proposed to obtain more accurate B1 mapping with short data acquisition time. To evaluate the performance of the proposed B1 mapping method, computational simulations were performed and compared with Morrell’s method, double angle method, and Yarnykh’s method. These results showed that the angle-to-noise ratio of the proposed B1 mapping method has wider B1 range compared to that of other B1 mapping methods. In addition, the proposed B1 mapping methods were compared to the multislice iterative signal intensity mapping method in both phantom and in vivo human experiments, and there was no remarkable difference between the two methods regarding the flip angle distribution in these experiments. Based on these results, this study demonstrated that the proposed B1 mapping method is suitable for accurately measuring B1 propagation under the condition providing reduced scan time and wider 3D coverage of B1 mapping by applying composite RF pulse and SER techniques into the phase-sensitive method
    corecore