811 research outputs found

    Seasonality of tuberculosis in the Republic of Korea, 2006-2016

    Get PDF
    OBJECTIVES While the seasonality of notified tuberculosis has been identified in several populations, there is not a descriptive epidemiological study on the seasonality of tuberculosis in Korea. This study aimed to evaluate the seasonality of tuberculosis in Korea from 2006 to 2016. METHODS Data regarding notified cases of tuberculosis by year and month was obtained from the Infectious Diseases Surveillance Yearbook, 2017 published by the Korea Centers for Disease Control and Prevention. Seasonal decomposition was conducted using the method of structural model of time series analysis with simple moving averages. RESULTS While the trough season was winter from 2006 to 2016, the peak season was summer between 2006 and 2012, but shifted to spring between 2013 and 2016. CONCLUSIONS Notified tuberculosis in Korea also showed seasonality. It is necessary to evaluate factors related to the seasonality of tuberculosis for controlling tuberculosis

    Vitamin D supplementation as a control program against latent tuberculosis infection in Korean high school students

    Get PDF
    The prevalence of latnet Mycobacterium tuberculosis infection (LTBI) in the first-grade high school students in South Korea was 2.1%, which was the lowest level at congregated settings in 2017. For LTBI cases refusing anti-tuberculosis (TB) medication or having poor compliance, additional support should be considered. Eight systematic reviews concluded that vitamin D (VD) deficiency is a risk factor for TB. While three of four South Korean adolescents were VD deficiency, VD supplementation could be a practical remedy to protect LTBI students of refusing anti-TB medication or having poor compliance

    Copper nanofiber-networked cobalt oxide composites for high performance Li-ion batteries

    Get PDF
    We prepared a composite electrode structure consisting of copper nanofiber-networked cobalt oxide (CuNFs@CoOx). The copper nanofibers (CuNFs) were fabricated on a substrate with formation of a network structure, which may have potential for improving electron percolation and retarding film deformation during the discharging/charging process over the electroactive cobalt oxide. Compared to bare CoOxthin-film (CoOxTF) electrodes, the CuNFs@CoOxelectrodes exhibited a significant enhancement of rate performance by at least six-fold at an input current density of 3C-rate. Such enhanced Li-ion storage performance may be associated with modified electrode structure at the nanoscale, improved charge transfer, and facile stress relaxation from the embedded CuNF network. Consequently, the CuNFs@CoOxcomposite structure demonstrated here can be used as a promising high-performance electrode for Li-ion batteries

    An Integrated Korean Biodiversity and Genetic Information Retrieval System

    Get PDF
    Background: On-line biodiversity information databases are growing quickly and being integrated into general bioinformatics systems due to the advances of fast gene sequencing technologies and the Internet. These can reduce the cost and effort of performing biodiversity surveys and genetic searches, which allows scientists to spend more time researching and less time collecting and maintaining data. This will cause an increased rate of knowledge build-up and improve conservations. The biodiversity databases in Korea have been scattered among several institutes and local natural history museums with incompatible data types. Therefore, a comprehensive database and a nation wide web portal for biodiversity information is necessary in order to integrate diverse information resources, including molecular and genomic databases. Results: The Korean Natural History Research Information System (NARIS) was built and serviced as the central biodiversity information system to collect and integrate the biodiversity data of various institutes and natural history museums in Korea. This database aims to be an integrated resource that contains additional biological information, such as genome sequences and molecular level diversity. Currently, twelve institutes and museums in Korea are integrated by the DiGIR (Distributed Generic Information Retrieval) protocol, with Darwin Core2.0 format as its metadata standard for data exchange. Data quality control and statistical analysis functions have been implemented. In particular, integrating molecular and genetic information from the National Center for Biotechnology Information (NCBI) databases with NARIS was recently accomplished. NARIS can also be extended to accommodate other institutes abroad, and the whole system can be exported to establish local biodiversity management servers. Conclusion: A Korean data portal, NARIS, has been developed to efficiently manage and utilize biodiversity data, which includes genetic resources. NARIS aims to be integral in maximizing biofrom resource utilization for conservation, management, research, education, industrial applications, and integration with other bioinformation data resources. It can be found at http://www.naris.go.krclose1

    PwRn1, a novel Ty3/gypsy-like retrotransposon of Paragonimus westermani: molecular characters and its differentially preserved mobile potential according to host chromosomal polyploidy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retrotransposons have been known to involve in the remodeling and evolution of host genome. These reverse transcribing elements, which show a complex evolutionary pathway with diverse intermediate forms, have been comprehensively analyzed from a wide range of host genomes, while the information remains limited to only a few species in the phylum Platyhelminthes.</p> <p>Results</p> <p>A LTR retrotransposon and its homologs with a strong phylogenetic affinity toward <it>CsRn1 </it>of <it>Clonorchis sinensis </it>were isolated from a trematode parasite <it>Paragonimus westermani </it>via a degenerate PCR method and from an insect species <it>Anopheles gambiae </it>by <it>in silico </it>analysis of the whole mosquito genome, respectively. These elements, designated <it>PwRn1 </it>and <it>AgCR-1 </it>– <it>AgCR-14 </it>conserved unique features including a t-RNA<sup>Trp </sup>primer binding site and the unusual CHCC signature of Gag proteins. Their flanking LTRs displayed >97% nucleotide identities and thus, these elements were likely to have expanded recently in the trematode and insect genomes. They evolved heterogeneous expression strategies: a single fused ORF, two separate ORFs with an identical reading frame and two ORFs overlapped by -1 frameshifting. Phylogenetic analyses suggested that the elements with the separate ORFs had evolved from an ancestral form(s) with the overlapped ORFs. The mobile potential of <it>PwRn1 </it>was likely to be maintained differentially in association with the karyotype of host genomes, as was examined by the presence/absence of intergenomic polymorphism and mRNA transcripts.</p> <p>Conclusion</p> <p>Our results on the structural diversity of <it>CsRn1</it>-like elements can provide a molecular tool to dissect a more detailed evolutionary episode of LTR retrotransposons. The <it>PwRn1</it>-associated genomic polymorphism, which is substantial in diploids, will also be informative in addressing genomic diversification following inter-/intra-specific hybridization in <it>P. westermani </it>populations.</p

    Effects of dodecacalcium heptaaluminate content on the setting time, compressive strength, alkalinity, and cytocompatibility of tricalcium silicate cement

    Get PDF
    Objective: This study aimed to investigate the effects of dodecacalcium hepta-aluminate (C12A7) content on some physicochemical properties and cytocompatibility of tricalcium silicate (C3S) cement using human dental pulp cells (hDPCs). Material and Methods: High purity C3S cement was manufactured by a solid phase method. C12A7 was mixed with the cement in proportions of 0, 5, 8, and 10 wt% (C12A7-0, -5, -8, and -10, respectively). Physicochemical properties including initial setting time, compressive strength, and alkalinity were evaluated. Cytocompatibility was assessed with cell viability tests and cell number counts. Statistical analysis was performed by using one-way analysis of variance (ANOVA) and Tukey’s test (p&lt;0.05). Results: The initial setting time of C3S-based cement was shorter in the presence of C12A7 (p&lt;0.05). After 1 day, C12A7-5 showed significantly higher compressive strength than the other groups (p&lt;0.05). After 7 days, the compressive strength of C12A7-5 was similar to that of C12A7-0, whereas other groups showed strength lower than C12A7-0. The pH values of all tested groups showed no significant differences after 1 day (p&gt;0.05). The C12A7-5 group showed similar cell viability to the C12A7-0 group (p&gt;0.05), while the other experimental groups showed lower values compared to C12A7-0 group (p&lt;0.05). The number of cells grown on the C12A7-5 specimen was higher than that on C12A7-8 and -10 (p&lt;0.05). Conclusions: The addition of C12A7 to C3S cement at a proportion of 5% resulted in rapid initial setting time and higher compressive strength with no adverse effects on cytocompatibility

    Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Full text link
    Modern tissue engineering strategies combine living cells and scaffold materials to develop biological substitutes that can restore tissue functions. Both natural and synthetic materials have been fabricated for transplantation of stem cells and their specific differentiation into muscles, bones and cartilages. One of the key objectives for bone regeneration therapy to be successful is to direct stem cells' proliferation and to accelerate their differentiation in a controlled manner through the use of growth factors and osteogenic inducers. Here we show that graphene provides a promising biocompatible scaffold that does not hamper the proliferation of human mesenchymal stem cells (hMSCs) and accelerates their specific differentiation into bone cells. The differentiation rate is comparable to the one achieved with common growth factors, demonstrating graphene's potential for stem cell research.Comment: 34 pages, 11 figures, 1 table, submitte

    Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1

    Get PDF
    Cancer therapeutics: Extending a drug&apos;s reach A new drug that blocks heat shock proteins (HSPs), helper proteins that are co-opted by cancer cells to promote tumor growth, shows promise for cancer treatment. Several drugs have targeted HSPs, since cancer cells are known to hijack these helper proteins to shield themselves from destruction by the body. However, the drugs have had limited success. Hye-Kyung Park and Byoung Heon Kang at Ulsan National Institutes of Science and Technology in South Korea and coworkers noticed that the drugs were not absorbed into mitochondria, a key cellular compartment, and HSPs in this compartment were therefore not being blocked. They identified a new HSP inhibitor that can reach every cellular compartment and inhibit all HSPs. Testing in mice showed that this inhibitor effectively triggered death of tumor cells, and therefore shows promise for anti-cancer therapy. The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity

    Browsing large scale cheminformatics data with dimension reduction

    Full text link
    Visualization of large-scale high dimensional data tool is highly valuable for scientific discovery in many fields. We present PubChemBrowse, a customized visualization tool for cheminformatics research. It provides a novel 3D data point browser that displays complex properties of massive data on commodity clients. As in GIS browsers for Earth and Environment data, chemical compounds with similar properties are nearby in the browser. PubChemBrowse is built around in-house high performance parallel MDS (Multi-Dimensional Scaling) and GTM (Generative Topographic Mapping) services and supports fast interaction with an external property database. These properties can be overlaid on 3D mapped compound space or queried for individual points. We prototype the use with Chem2Bio2RDF system using SPARQL query language to access over 20 publicly accessible bioinformatics databases. We describe our design and implementation of the integrated PubChemBrowse application and outline its use in drug discovery. The same core technologies can be used to develop similar high dimensional browsers in other scientific areas. 1
    corecore