2,512 research outputs found

    Numerical simulation of molten pool flow for various welding parameters in V-groove GMA pipe welding

    Full text link

    Soil properties of cultivation sites for mountain-cultivated ginseng at local level

    Get PDF
    AbstractBackgroundIdentifying suitable site for growing mountain-cultivated ginseng is a concern for ginseng producers. This study was conducted to evaluate the soil properties of cultivation sites for mountain-cultivated ginseng in Hamyang-gun, which is one of the most well-known areas for mountain-cultivated ginseng in Korea.MethodsThe sampling plots from 30 sites were randomly selected on or near the center of the ginseng growing sites in July and August 2009. Soil samples for the soil properties analysis were collected from the top 20 cm at five randomly selected points.ResultsMountain-cultivated ginseng was grown in soils that varied greatly in soil properties on coniferous, mixed, and deciduous broad-leaved stand sites of elevations between > 200 m and < 1,000 m. The soil bulk density was higher in Pinus densiflora than in Larix leptolepis stand sites and higher in the < 700-m sites than in > 700-m sites. Soil pH was unaffected by the type of stand sites (pH 4.35–4.55), whereas the high-elevation sites of > 700 m were strongly acidified, with pH 4.19. The organic carbon and total nitrogen content were lower in the P. densiflora stand sites than in the deciduous broad-leaved stand sites. Available phosphorus was low in all of the stand sites. The exchangeable cation was generally higher in the mixed and low-elevation sites than in the P. densiflora and high-elevation sites, respectively.ConclusionThese results indicate that mountain-cultivated ginseng in Korea is able to grow in very acidic, nutrient-depleted forest soils

    Acetonitrile­{3-[bis­(2-pyridyl­methyl-ÎșN)amino-ÎșN]propanol-ÎșO}(perchlorato-ÎșO)copper(II) perchlorate

    Get PDF
    In the title compound, [Cu(ClO4)(C2H3N)(C15H19N3O)]ClO4, the CuII ion is coordinated by three N atoms and a hydroxyl-O atom of the tetra­dentate ligand, an O atom of a perchlorate ion and an N atom of an acetonitrile ligand giving a tetra­gonally distorted octa­hedral environment around the copper(II) atom. There is an offset inter-complex face-to-face π–π inter­action [centroid–centroid distance = 3.718 (2) Å] involving one of the pyridine rings of the ligand as well as an intra-complex O—H⋯O hydrogen-bonding inter­action between the coordinated hydroxyl group of the ligand and the perchlorate counter-ion

    Mesenchymal Stem Cells Improve Wound Healing In Vivo via Early Activation of Matrix Metalloproteinase-9 and Vascular Endothelial Growth Factor

    Get PDF
    We investigated the effects of mesenchymal stem cells (MSCs) on wound healing using a three-dimensional (3D) collagen gel scaffold. Three circular full-thickness skin defects were created on the back of Sprague-Dawley rats. One site was covered with a 3D collagen gel containing 2 × 106 MSCs (MSCs+/3D collagen+). Another site was replaced with a 3D collagen gel without MSCs and the third site was left empty. The wound size was significantly reduced in the MSCs+/3D collagen+ sites. MSCs+/3D collagen+ sites exhibited the most neovascularization. FISH showed that Y-chromosome possessing cells were found within the dermis of MSCs+/3D collagen+ sites. Gelatin zymography revealed that the most intense expression of MMP-9 was detected early in the MSCs+/3D collagen+ sites. Our results indicate that MSCs upregulate the early expression of MMP-9 which induces the early mobilization of VEGF. Thus, MSCs appear to accelerate significantly wound healing via early activation of MMP-9 and VEGF

    Neuroprotective Effects of a Traditional Multi-Herbal Medicine Kyung-Ok-Ko in an Animal Model of Parkinson's Disease: Inhibition of MAPKs and NF-ÎșB Pathways and Activation of Keap1-Nrf2 Pathway

    Get PDF
    Kyung-Ok-Ko (KOK), a traditional multi-herbal medicine, has been widely used in Oriental medicine as a restorative that can enforce vitality of whole organs and as a medicine that can treat age-related symptoms including lack of vigor and weakened immunity. However, the beneficial effect of KOK on neurological diseases such as Parkinson's diseases (PD) is largely unknown. Thus, the objective of this study was to examine the protective effect of KOK on neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Pre-treatment with KOK at 1 or 2 g/kg/day (p.o.) showed significant mitigating effects on neurological dysfunction (motor and welfare) based on pole, rotarod, and nest building tests. It also showed effects on survival rate. These positive effects of KOK were related to inhibition of loss of tyrosine hydroxylase–positive neurons, reduction of MitoSOX activity, increased apoptotic cells, microglia activation, and upregulation of inflammatory factors [interleukin (IL)-1ÎČ, IL-6, cyclooxygenase-2, and inducible nitric oxide], and reduced blood-brain barrier (BBB) disruption in the substantia nigra pars compacta (SNpc) and/or striatum after MPTP intoxication. Interestingly, these effects of KOK against MPTP neurotoxicity were associated with inhibition of phosphorylation of mitogen-activated protein kinases and nuclear factor-kappa B signaling pathways along with up-regulation of nuclear factor erythroid 2-related factor 2 pathways in SNpc and/or striatum. Collectively, our findings suggest that KOK might be able to mitigate neurotoxicity in MPTP-induced mouse model of PD via multi-effects, including anti-neuronal and anti-BBB disruption activities through its anti-inflammatory and anti-oxidative activities. Therefore, KOK might have potential for preventing and/or treating PD
    • 

    corecore