426 research outputs found
Whole genomic approach in mutation discovery of infantile spasms patients
Infantile spasms (IS) are a clinically and genetically heterogeneous group of epilepsy disorders in early infancy. The genetic backgrounds of IS have been gradually unraveled along with the increased application of next-generation sequencing (NGS). However, to date, only selected genomic regions have been sequenced using a targeted approach in most cases of IS, and the genetic etiologies of the majority of patients remain unknown. We conducted a proof-of-concept study using whole-genome sequencing (WGS) for the genetic diagnosis of IS. We included 16 patients with IS for this study, and WGS was applied as a first-tier test for genetic diagnosis. In total, we sequenced the whole genomes of 28 participants, including the genomes of six patients, which were sequenced with those of their parents. Among variants identified, we focused on those located in epilepsy or seizure-associated genes. We used two different methods to call relevant large deletions from WGS results. We found pathogenic or likely pathogenic variants in four patients (25.0%); a de novo variant in HDAC4, compound heterozygous variants in GRM7, and heterozygous variants in CACNA1E and KMT2E. We also selected two more candidate variants in SOX5 and SHROOM4 intronic regions. Although there are currently several difficulties in applying WGS for genetic diagnosis, especially in clinical interpretation of non-coding variants, we believe that developing sequencing technologies would overcome these hurdles in the near future. Considering the vast genetic heterogeneity and the substantial portion of patients with unknown etiologies, further studies using whole genomic approaches are necessary for patients with IS
A compound heterozygous mutation in the gene: the first pediatric case causes fish odor syndrome in Korea
Trimethylaminuria (TMAuria), known as “fish odor syndrome,” is a congenital metabolic disorder characterized by an odor resembling that of rotting fish. This odor is caused by the secretion of trimethylamine (TMA) in the breath, sweat, and body secretions and the excretion of TMA along with urine. TMAuria is an autosomal recessive disorder caused by mutations in flavin-containing monooxygenase 3 (FMO3). Most TMAuria cases are caused by missense mutations, but nonsense mutations have also been reported in these cases. Here, we describe the identification of a novel FMO3 gene mutation in a patient with TMAuria and her family. A 3-year-old girl presented with a strong corporal odor after ingesting fish. Genomic DNA sequence analysis revealed that she had compound heterozygous FMO3 mutations; One mutation was the missense mutation p.Val158Ile in exon 3, and the other was a novel nonsense mutation, p.Ser364X, in exon 7 of the FMO3 gene. Familial genetic analyses showed that the p.Val158Ile mutation was derived from the same allele in the father, and the p.Ser364X mutation was derived from the mother. This is the first description of the p.Ser364X mutation, and the first report of a Korean patient with TMAuria caused by novel compound heterozygous mutations
Fatty acid desaturase (FADS) gene polymorphisms and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy Korean men: cross-sectional study
<p>Abstract</p> <p>Background</p> <p>We investigated the relationship between fatty acid desaturase (<it>FADS</it>) gene polymorphisms and insulin resistance (IR) in association with serum phospholipid polyunsaturated fatty acid (FA) composition in healthy Korean men.</p> <p>Methods</p> <p>Healthy men (n = 576, 30 ~ 79 years old) were genotyped for rs174537 near <it>FADS1 </it>(<it>FEN1</it>-10154G>T), <it>FADS2 </it>(rs174575C>G, rs2727270C>T), and <it>FADS3 </it>(rs1000778C>T) SNPs. Dietary intake, serum phospholipid FA composition and HOMA-IR were measured.</p> <p>Results</p> <p>Fasting insulin and HOMA-IR were significantly higher in the rs174575G allele carriers than the CC homozygotes, but lower in the rs2727270T allele carriers than the CC homozygotes. The proportion of linoleic acid (18:2ω-6, LA) was higher in the minor allele carriers of <it>FEN1</it>-10154G>T, rs174575C>G and rs2727270C>T than the major homozygotes, respectively. On the other hand, the proportions of dihomo-γ-linolenic acid (20:3ω-6, DGLA) and arachidonic acid (20:4ω-6, AA) in serum phospholipids were significantly lower in the minor allele carriers of <it>FEN1</it>-10154 G>T carriers and rs2727270C>T than the major homozygotes respectively. AA was also significantly lower in the rs1000778T allele carriers than the CC homozygotes. HOMA-IR positively correlated with LA and DGLA and negatively with AA/DGLA in total subjects. Interestingly, rs174575G allele carriers showed remarkably higher HOMA-IR than the CC homozygotes when subjects had higher proportions of DLGA (≥1.412% in total serum phospholipid FA composition) (<it>P </it>for interaction = 0.009) or of AA (≥4.573%) (<it>P </it>for interaction = 0.047).</p> <p>Conclusion</p> <p>HOMA-IR is associated with <it>FADS </it>gene cluster as well as with FA composition in serum phospholipids. Additionally, HOMA-IR may be modulated by the interaction between rs174575C>G and the proportion of DGLA or AA in serum phospholipids.</p
Silicon germanium photo-blocking layers for a-IGZO based industrial display
Amorphous indium- gallium-zinc oxide (a-IGZO) has been intensively studied for the application to active matrix flat-panel display because of its superior electrical and optical properties. However, the characteristics of a-IGZO were found to be very sensitive to external circumstance such as light illumination, which dramatically degrades the device performance and stability practically required for display applications. Here, we suggest the use for silicon-germanium (Si-Ge) films grown plasmaenhanced chemical vapour deposition (PECVD) as photo-blocking layers in the a-IGZO thin film transistors (TFTs). The charge mobility and threshold voltage (V-th) of the TFTs depend on the thickness of the Si-Ge films and dielectric buffer layers (SiNX), which were carefully optimized to be similar to 200 nm and similar to 300 nm, respectively. As a result, even after 1,000 s illumination time, the V-th and electron mobility of the TFTs remain unchanged, which was enabled by the photo-blocking effect of the Si-Ge layers for a-IGZO films. Considering the simple fabrication process by PECVD with outstanding scalability, we expect that this method can be widely applied to TFT devices that are sensitive to light illumination.
Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1
Cancer therapeutics: Extending a drug's reach A new drug that blocks heat shock proteins (HSPs), helper proteins that are co-opted by cancer cells to promote tumor growth, shows promise for cancer treatment. Several drugs have targeted HSPs, since cancer cells are known to hijack these helper proteins to shield themselves from destruction by the body. However, the drugs have had limited success. Hye-Kyung Park and Byoung Heon Kang at Ulsan National Institutes of Science and Technology in South Korea and coworkers noticed that the drugs were not absorbed into mitochondria, a key cellular compartment, and HSPs in this compartment were therefore not being blocked. They identified a new HSP inhibitor that can reach every cellular compartment and inhibit all HSPs. Testing in mice showed that this inhibitor effectively triggered death of tumor cells, and therefore shows promise for anti-cancer therapy. The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity
Nusinersen demonstrates effectiveness in treating spinal muscular atrophy: findings from a three-year nationwide study in Korea
IntroductionNusinersen is the first drug approved for spinal muscular atrophy (SMA) treatment. In this study, we aimed to evaluate the long-term safety and efficacy of nusinersen, assess the therapeutic effects based on the treatment initiation timing and baseline motor function, and explore the perception of functional improvement from either parents or patients, utilizing 3-year nationwide follow-up data in South Korea.MethodsWe enrolled patients with SMA who were treated with nusinersen under the National Health Insurance coverage, with complete motor score records available and a minimum treatment duration of 6 months. To evaluate the motor function of patients, the Hammersmith Infant Neurological Examination-2 (HINE-2) was used for type 1 and the Expanded Hammersmith Functional Motor Scale (HFMSE) was used for types 2 and 3 patients. A significant improvement was defined as a HINE-2 score gain ≥5 for patients with type 1 and an HFMSE score ≥ 3 for patients with types 2 and 3 SMA. Effects of treatment timing were assessed. Patients with type 2 were further categorized based on baseline motor scores for outcome analysis. We also analyzed a second dataset from five tertiary hospitals with the information on parents/patients-reported impressions of improvement.ResultsThe study comprised 137 patients, with 21, 103, and 13 patients representing type 1, 2, and 3 SMA, respectively. At the 3-year follow-up, the analysis encompassed 7 patients with type 1, 12 patients with type 2, and none with type 3. Nearly half of all enrolled patients across SMA types (42.8, 59.2 and 46.2%, respectively) reached the 2-year follow-up for analysis. Patients with type 1 SMA exhibited gradual motor function improvement over 1-, 2-, and 3-year follow-ups (16, 9, and 7 patients, respectively). Patients with type 2 SMA demonstrated improvement over 1-, 2-, and 3-year follow-ups (96, 61 and 12 patients, respectively). Early treatment from symptom onset resulted in better outcomes for patients with type 1 and 2 SMA. In the second dataset, 90.7% of 108 patients reported subjective improvement at the 1-year follow-up.ConclusionNusinersen treatment for types 1–3 SMA is safe and effective in long-term follow-up. Early treatment initiation was a significant factor affecting long-term motor outcome
A case of Rubinstein-Taybi Syndrome with a CREB-binding protein gene mutation
Rubinstein-Taybi syndrome (RTS) is a congenital disorder characterized by typical facial features, broad thumbs and toes, with mental retardation. Additionally, tumors, keloids and various congenital anomalies including congenital heart defects have been reported in RTS patients. In about 50% of the patients, mutations in the CREB binding protein (CREBBP) have been found, which are understood to be associated with cell growth and proliferation. Here, we describe a typical RTS patient with Arnold-Chiari malformation. A mutation in the CREBBP gene, c.4944_4945insC, was identified by mutational analysis
The Common NF-κB Essential Modulator (NEMO) Gene Rearrangement in Korean Patients with Incontinentia Pigmenti
Incontinentia pigmenti (IP) is a rare X-linked dominant disorder characterized by highly variable abnormalities of the skin, eyes and central nervous system. A mutation of the nuclear factor-κB essential modulator (NEMO) located at Xq28 is believed to play a role in pathogenesis and the mutation occurs mostly in female patients due to fatal consequence of the mutation in males in utero. This study was designed to identify the common NEMO rearrangement in four Korean patients with IP. Deletion of exons 4 to 10 in the NEMO, the most common mutation in IP patients, was detected in all of the patients by the use of long-range PCR analysis. This method enabled us to discriminate between NEMO and pseudogene rearrangements. Furthermore, all of the patients showed skewed XCI patterns, indicating pathogenicity of IP was due to cells carrying the mutant X chromosome. This is the first report of genetically confirmed cases of IP in Korea
Membrane-Bound Methyltransferase Complex VapA-VipC-VapB Guides Epigenetic Control of Fungal Development
Epigenetic and transcriptional control of gene
expression must be coordinated in response to
external signals to promote alternative multicellular
developmental programs. The membrane-associated
trimeric complex VapA-VipC-VapB controls a
signal transduction pathway for fungal differentiation.
The VipC-VapB methyltransferases are tethered
to the membrane by the FYVE-like zinc finger protein
VapA, allowing the nuclear VelB-VeA-LaeA complex
to activate transcription for sexual development.
Once the release from VapA is triggered, VipCVapB
is transported into the nucleus. VipC-VapB
physically interacts with VeA and reduces its nuclear
import and protein stability, thereby reducing the
nuclear VelB-VeA-LaeA complex. Nuclear VapB
methyltransferase diminishes the establishment of
facultative heterochromatin by decreasing histone 3
lysine 9 trimethylation (H3K9me3). This favors activation
of the regulatory genes brlA and abaA, which
promote the asexual program. The VapA-VipCVapB
methyltransferase pathway combines control
of nuclear import and stability of transcription factors
with histone modification to foster appropriate differentiation
responses
Effectiveness of a Comprehensive Stress Management Program to Reduce Work-Related Stress in a Medium-Sized Enterprise
OBJECTIVES: To assess the effectiveness of a comprehensive workplace stress management program consisting of participatory action-oriented training (PAOT) and individual management. METHODS: A comprehensive workplace stress management program was conducted in a medium-sized enterprise. The baseline survey was conducted in September 2011, using the Korean Occupational Stress Scale (KOSS) and Worker’s Stress Response Inventory (WSRI). After implementing both organizational and individual level interventions, the follow up evaluation was conducted in November 2011. RESULTS: Most of the workers participated in the organizational level PAOT and made Team-based improvement plans. Based on the stress survey, 24 workers were interviewed by a researcher. After the organizational and individual level interventions, there was a reduction of several adverse psychosocial factors and stress responses. In the case of blue-collar workers, psychosocial factors such as the physical environment, job demands, organizational system, lack of rewards, and occupational climate were significantly improved; in the case of white-collar workers, the occupational climate was improved. CONCLUSIONS: In light of these results, we concluded that the comprehensive stress management program was effective in reducing work-related stress in a short-term period. A persistent long-term follow up is necessary to determine whether the observed effects are maintained over time. Both team-based improvement activities and individual interviews have to be sustainable and complementary to each other under the long-term plan
- …