41,839 research outputs found

    Holographic graphene in a cavity

    No full text
    The effective strength of EM interactions can be controlled by confining the fields to a cavity and these effects might be used to push graphene into a strongly coupled regime. We study the similar D3/probe D5 system on a compact space and discuss the gravity dual for a cavity between two mirrors. We show that the introduction of a conformal symmetry breaking length scale introduces a mass gap on a single D5 sheet. Bilayer configurations display exciton condensation between the sheets. There is a first order phase transition away from the exciton condensate if a strong enough magnetic field is applied. We finally map out the phase structure of these systems in a cavity with the presence of mirror reflections of the probes - a mass gap may form through exciton condensation with the mirror image

    Output-based Aid for Sustainable Sanitation

    No full text
    A review of the experience to date in applying output-based and other results-oriented financing aid formats to the delivery of sanitation services and goods in developing countries. The paper looks at the theoretical underpinnings which justify output-based subsidies in sanitation, reviews a selection of output-based aid projects and then proposes some new approaches which could help to make financing in sanitation more effective and accountable

    Non-perturbative calculations of a global U(1) theory at finite density and temperature

    Get PDF
    We use an optimised hopping parameter expansion for the free energy (linear delta expansion) to study the phase transitions at finite temperature and finite charge density in a global U(1) scalar Higgs sector on the lattice at large lattice couplings. We are able to plot out phase diagrams in lattice parameter space and find that the standard second-order phase transition with temperature at zero chemical potential becomes first order as the chemical potential increases.Comment: 24 pages, 11 figure

    Hydrological connectivity of soil pipes determined by ground-penetrating radar tracer detection

    Get PDF
    Soil pipes are common and important features of many catchments, particularly in semi-arid and humid areas, and can contribute a large proportion of runoff to river systems. They may also significantly influence catchment sediment and solute yield. However, there are often problems in finding and defining soil pipe networks which are located deep below the surface. Ground penetrating radar (GPR) has been used for non-destructive identification and mapping of soil pipes in blanket peat catchments. While GPR can identify subsurface cavities, it cannot alone determine hydrological connectivity between one cavity and another. This paper presents results from an experiment to test the ability of GPR to establish hydrological connectivity between pipes through use of a tracer solution. Sodium chloride was injected into pipe cavities previously detected by the radar. The GPR was placed downslope of the injection points and positioned on the ground directly above detected soil pipes. The resultant radargrams showed significant changes in reflectance from some cavities and no change from others. Pipe waters were sampled in order to check the radar results. Changes in electrical conductivity of the pipe water could be detected by the GPR, without data post-processing, when background levels were increased by greater than approximately twofold. It was thus possible to rapidly determine hydrological connectivity of soil pipes within dense pipe networks across hillslopes without ground disturbance. It was also possible to remotely measure travel times through pipe systems; the passing of the salt wave below the GPR produced an easily detectable signal on the radargram which required no post-processing. The technique should allow remote sensing of water sources and sinks for soil pipes below the surface. The improved understanding of flowpath connectivity will be important for understanding water delivery, solutional and particulate denudation, and hydrological and geomorphological model development

    Telemedicine and primary health: The virtual doctor project Zambia

    Get PDF
    This paper is a commentary on a project application of telemedicine to alleviate primary health care problems in Lundazi district in the Eastern province of Zambia. The project dubbed 'The Virtual Doctor Project' will use hard body vehicles fitted with satellite communication devices and modern medical equipment to deliver primary health care services to some of the neediest areas of the country. The relevance and importance of the project lies in the fact that these areas are hard-to-reach due to rugged natural terrain and have very limited telecommunications infrastructure. The lack of these and other basic services makes it difficult for medical personnel to settle in these areas, which leads to an acute shortage of medical personnel. The paper presents this problem and how it is addressed by 'The Virtual Doctor Project', emphasizing that while the telemedicine concept is not new in sub-Saharan Africa, the combination of mobility and connectivity to service a number of villages 'on the go' is an important variation in the shift back to the 1978 Alma Ata principles of the United Nations World Health Organization (WHO). This overview of the Virtual Doctor Project in Zambia provides insight into both the potential for ICT, and the problems and limitations that any 'real-world' articulation of this technology must confront.Telemedicine, Satellite, Primary health, Alma Ata
    • 

    corecore