14,190 research outputs found

    High-entropy alloys: a critical assessment of their founding principles and future prospects

    Get PDF
    High-entropy alloys (HEAs) are a relatively new class of materials that have gained considerable attention from the metallurgical research community over recent years. They are characterised by their unconventional compositions, in that they are not based around a single major component, but rather comprise multiple principal alloying elements. Four core effects have been proposed in HEAs: (1) the entropic stabilisation of solid solutions, (2) the severe distortion of their lattices, (3) sluggish diffusion kinetics and (4) that properties are derived from a cocktail effect. By assessing these claims on the basis of existing experimental evidence in the literature, as well as classical metallurgical understanding, it is concluded that the significance of these effects may not be as great as initially believed. The effect of entropic stabilisation does not appear to be overarching, insufficient evidence exists to establish the strain in the lattices of HEAs, and rapid precipitation observed in some HEAs suggests their diffusion kinetics are not necessarily anomalously slow in comparison to conventional alloys. The meaning and influence of the cocktail effect is also a matter for debate. Nevertheless, it is clear that HEAs represent a stimulating opportunity for the metallurgical research community. The complex nature of their compositions means that the discovery of alloys with unusual and attractive properties is inevitable. It is suggested that future activity regarding these alloys seeks to establish the nature of their physical metallurgy, and develop them for practical applications. Their use as structural materials is one of the most promising and exciting opportunities. To realise this ambition, methods to rapidly predict phase equilibria and select suitable HEA compositions are needed, and this constitutes a significant challenge. However, while this obstacle might be considerable, the rewards associated with its conquest are even more substantial. Similarly, the challenges associated with comprehending the behaviour of alloys with complex compositions are great, but the potential to enhance our fundamental metallurgical understanding is more remarkable. Consequently, HEAs represent one of the most stimulating and promising research fields in materials science at present.One of the authors (NGJ) would like to acknowledge the EPSRC/Rolls-Royce Strategic Partnership for funding under EP/M005607/1

    The transferability of diatoms to clothing and the methods appropriate for their collection and analysis in forensic geoscience

    Get PDF
    AbstractForensic geoscience is concerned with the analysis of geological materials in order to compare and exclude environmental samples from a common source, or to identify an unknown provenance in a criminal investigation. Diatom analysis is currently an underused technique within the forensic geoscience approach, which has the potential to provide an independent ecological assessment of trace evidence. This study presents empirical data to provide a preliminary evidence base in order to be able to understand the nature of diatom transfers to items of clothing, and the collection of transferred diatom trace evidence from a range of environments under experimental conditions. Three diatom extraction methods were tested on clothing that had been in contact with soil and water sites: rinsing in water (RW), rinsing in ethanol (RE), and submersion in H2O2 solution (H). Scanning electron microscopy (S.E.M.) analysis was undertaken in order to examine the degree of diatom retention on treated clothing samples. The total diatom yield and species richness data was recorded from each experimental sample in order to compare the efficacy of each method in collecting a representative sample for analysis. Similarity was explored using correspondence analysis. The results highlight the efficiency of H2O2 submersion in consistently extracting high diatom counts with representative species from clothing exposed to both aquatic and terrestrial sites. This is corroborated by S.E.M. analysis. This paper provides an important empirical evidence base for both establishing that diatoms do indeed transfer to clothing under forensic conditions in a range of environments, and in identifying that H2O2 extraction is the most efficient technique for the optimal collection of comparative samples. There is therefore potentially great value in collecting and analysing diatom components of geoforensic samples in order to aid in forensic investigation

    Superelastic load cycling of Gum Metal

    Get PDF
    The superelastic beta titanium alloy, Gum Metal, has been found to accumulate plastic strain during tensile load cycling in the superelastic regime. This is evident from the positive drift of the macroscopic stress vs. strain hysteresis curve parallel to the strain axis and the change in its geometry subsequent to every load-unload cycle. In addition, there is a progressive reduction in the hysteresis loop width and in the stress at which the superelastic transition occurs. In situ synchrotron X-ray diffraction has shown that the lattice strain exhibited the same behaviour as that observed in macroscopic measurements and identified further evidence of plastic strain accumulation. The mechanisms responsible for the observed behaviour have been evaluated using transmission electron microscopy, which revealed a range of different defects that formed during load cycling. The formation of these defects is consistent with the classical mathematical theory for the bcc to orthorhombic martensitic transformation. It is the accumulation of these defects over time that alters its superelastic behaviour

    The influence of Al: Nb ratio on the microstructure and mechanical response of quaternary Ni-Cr-Al-Nb alloys

    Get PDF
    The influence of Al:Nb ratio on the microstructure and properties of Ni–Cr–Al–Nb alloys has been investigated following long-term exposure at elevated temperatures. The γ′ volume fraction, size and lattice misfit were seen to increase with a larger Al:Nb ratio, although these changes resulted in reduced hardness. The change in the critical resolved shear stress (CRSS) associated with strong dislocation coupling was determined to be the dominant strengthening mechanism and increased with decreasing Al:Nb ratio. A distribution of tertiary γ′ was observed to be necessary in maximising the mechanical properties of these alloys.This work was supported by the EPSRC/Rolls-Royce Strategic Partnership (EP/H022309/1 and EP/H500375/1).This is the final published version, which can also be found on the Elsevier website at: http://www.sciencedirect.com/science/article/pii/S0921509314007369
    • …
    corecore