65,139 research outputs found

    5-micron photometry of late-type dwarfs

    Get PDF
    We present narrowband-M photometry of nine low-mass dwarfs with spectral types ranging from M2.5 to L0.5. Combining the (L'-M') colours derived from our observations with data from the literature, we find colours consistent with a Rayleigh-Jeans flux distribution for spectral types earlier than M5, but enhanced F_3.8/F_4.7 flux ratios (negative (L'-M') colours) at later spectral types. This probably reflects increased absorption at M' due to the CO fundamental band. We compare our results against recent model predictions and briefly discuss the implications.Comment: accepted for the Astronomical Journa

    Order parameter in superconductors with non-degenerate bands

    Full text link
    In noncentrosymmetric metals, the spin degeneracy of the electronic bands is lifted by spin-orbit coupling. We consider general symmetry properties of the pairing function Delta(k) in noncentrosymmetric superconductors with spin-orbit coupling (NSC), including CePt3Si, UIr and Cd2Re2O7. We find that Delta(k) = chi(k) t(k), where chi(k) is an even function which transforms according to the irreducible representations of the crystallographic point group and t(k) is a model dependent phase factor. We consider tunnelling between a NSC and a conventional superconductor. It is found that, in terms of thermodynamical properties as well as the Josephson effect, the state of NSC resembles a singlet superconducting state with gap function chi(k).Comment: 8 pages, references updated. Accepted to PR

    Classical model for bulk-ensemble NMR quantum computation

    Get PDF
    We present a classical model for bulk-ensemble NMR quantum computation: the quantum state of the NMR sample is described by a probability distribution over the orientations of classical tops, and quantum gates are described by classical transition probabilities. All NMR quantum computing experiments performed so far with three quantum bits can be accounted for in this classical model. After a few entangling gates, the classical model suffers an exponential decrease of the measured signal, whereas there is no corresponding decrease in the quantum description. We suggest that for small numbers of quantum bits, the quantum nature of NMR quantum computation lies in the ability to avoid an exponential signal decrease.Comment: 14 pages, no figures, revte

    Weighted ergodic theorems for Banach-Kantorovich lattice Lp(^,μ^)L_{p}(\hat{\nabla},\hat{\mu})

    Full text link
    In the present paper we prove weighted ergodic theorems and multiparameter weighted ergodic theorems for positive contractions acting on Lp(^,μ^)L_p(\hat{\nabla},\hat{\mu}). Our main tool is the use of methods of measurable bundles of Banach-Kantorovich lattices.Comment: 11 page

    Approximate quantum counting on an NMR ensemble quantum computer

    Full text link
    We demonstrate the implementation of a quantum algorithm for estimating the number of matching items in a search operation using a two qubit nuclear magnetic resonance (NMR) quantum computer.Comment: 4 pages LaTeX/RevTex including 4 figures (3 LaTeX, 1 PostScript). Submitted to Physical Review Letter

    3D Simulations of MHD Jet Propagation Through Uniform and Stratified External Environments

    Get PDF
    We present a set of high-resolution 3D MHD simulations of steady light, supersonic jets, exploring the influence of jet Mach number and the ambient medium on jet propagation and energy deposition over long distances. The results are compared to simple self-similar scaling relations for the morphological evolution of jet-driven structures and to previously published 2D simulations. For this study we simulated the propagation of light jets with internal Mach numbers 3 and 12 to lengths exceeding 100 initial jet radii in both uniform and stratified atmospheres. The propagating jets asymptotically deposit approximately half of their energy flux as thermal energy in the ambient atmosphere, almost independent of jet Mach number or the external density gradient. Nearly one-quarter of the jet total energy flux goes directly into dissipative heating of the ICM, supporting arguments for effective feedback from AGNs to cluster media. The remaining energy resides primarily in the jet and cocoon structures. Despite having different shock distributions and magnetic field features, global trends in energy flow are similar among the different models. As expected the jets advance more rapidly through stratified atmospheres than uniform environments. The asymptotic head velocity in King-type atmospheres shows little or no deceleration. This contrasts with jets in uniform media with heads that are slowed as they propagate. This suggests that the energy deposited by jets of a given length and power depends strongly on the structure of the ambient medium. While our low-Mach jets are more easily disrupted, their cocoons obey evolutionary scaling relations similar to the high-Mach jets.Comment: Accepted in ApJ, 32 pages, 18 figures, animations available from: http://www.msi.umn.edu/Projects/twj/newsite/projects/radiojets/movies

    Analytic perturbation theory in QCD and Schwinger's connection between the beta-function and the spectral density

    Get PDF
    We argue that a technique called analytic perturbation theory leads to a well-defined method for analytically continuing the running coupling constant from the spacelike to the timelike region, which allows us to give a self-consistent definition of the running coupling constant for timelike momentum. The corresponding β\beta-function is proportional to the spectral density, which confirms a hypothesis due to Schwinger.Comment: 11 pages, 2 figure

    Synthetic Observations of Simulated Radio Galaxies I: Radio and X-ray Analysis

    Get PDF
    We present an extensive synthetic observational analysis of numerically- simulated radio galaxies designed to explore the effectiveness of conventional observational analyses at recovering physical source properties. These are the first numerical simulations with sufficient physical detail to allow such a study. The present paper focuses on extraction of magnetic field properties from nonthermal intensity information. Synchrotron and inverse-Compton intensities provided meaningful information about distributions and strengths of magnetic fields, although considerable care was called for. Correlations between radio and X-ray surface brightness correctly revealed useful dynamical relationships between particles and fields. Magnetic field strength estimates derived from the ratio of X-ray to radio intensity were mostly within about a factor of two of the RMS field strength along a given line of sight. When emissions along a given line of sight were dominated by regions close to the minimum energy/equipartition condition, the field strengths derived from the standard power-law-spectrum minimum energy calculation were also reasonably close to actual field strengths, except when spectral aging was evident. Otherwise, biases in the minimum- energy magnetic field estimation mirrored actual differences from equipartition. The ratio of the inverse-Compton magnetic field to the minimum-energy magnetic field provided a rough measure of the actual total energy in particles and fields in most instances, within an order of magnitude. This may provide a practical limit to the accuracy with which one may be able to establish the internal energy density or pressure of optically thin synchrotron sources.Comment: 43 pages, 14 figures; accepted for publication in ApJ, v601 n2 February 1, 200

    Magnetic Resonance of the Intrinsic Defects of the Spin-Peierls Magnet CuGeO3

    Full text link
    ESR of the pure monocrystals of CuGeO3 is studied in the frequency range 9-75 GHz and in the temperature interval 1.2-25 K. The splitting of the ESR line into several spectral components is observed below 5 K, in the temperature range where the magnetic susceptibility is suppressed by the spin-Peierls dimerization. The analysis of the magnetic resonance signals allows one to separate the signals of the S=1/2- and S=1 defects of the spin-Peierls phase. The value of g-factor of these signals is close to that of the Cu-ion. The additional line of the magnetic resonance is characterized by an anomalous value of the g-factor and by the threshold-like increase of the microwave susceptibility when the microwave power is increasing. The ESR signals are supposingly attributed to two types of the planar magnetic defects, arising at the boundaries of the domains of the spin-Peierls state with the different values of the phase of the dimerization.Comment: LATEX-text, 12 PS-figures, typos corrected, LATEX-style change
    corecore